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Section 10.3. The Banach Contraction Principle

Note. This is the one section in the whole text book that has the greatest po-

tential to be considered as related to “applied math,” in the traditional sense. Of

course we could argue that Lebesgue measure and integration finds application in

the Lp spaces (as in Chapters 7 and 8), or that this class finds applications to func-

tional analysis and subsequently to probability theory. . . but that’s not what most

folks think about as “applications.” We will mention applications of the Banach

Contraction Principle (and some of its relatives) in numerical analysis and differ-

ential equations. We will prove the Picard Local Existence Theorem (Theorem

10.3.C), which gives conditions under which certain ordinary differential equations

are guaranteed to have unique solutions.

Definition. Let X be a metric space and T a mapping of X to itself, T : X → X.

A point x ∈ X is a fixed point of T if T (x) = x.

Note 10.3.A. In this section we find conditions that guarantee a function will

have a fixed point. The result will involve limits and so require that the function be

defined on a complete metric space. A real-valued function f of a real variable has a

fixed point if and only if its graph y = f(x) intersects the line y = x. In the special

case where we have a continuous function f : [a, b] → R for which f([a, b]) ⊆ [a, b],

a fixed point must exist. This follows from the Intermediate Value Theorem as

applied to g(x) = f(x)− x since g is continuous on [a, b], g(a) = f(a)− a ≥ 0, and

g(b) = f(b)− b ≤ 0, implying that g(x0) = f(x0)− x0 = 0 for some x0 ∈ [a, b]. In
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fact, you may have seen this result in Numerical Analysis (MATH 4257/5257). It

appears (with the same proof) as Theorem 2.3(i); see my online notes for Numerical

Analysis on Section 2.2. Fixed-Point Iteration. These Numerical Analysis notes

include specific applications of the theorem.

Note 10.3.B. A subset K of Rn is convex if whenever u, v ∈ K, the line segment

{tu + (1 − t)v | 0 ≤ t ≤ 1} joining u and v is contained in K (strictly speaking,

the arithmetic statement “tu + (1− t)v” treats u and v as though they are vectors

in Rn). The following is an extension of Note 10.3.A from R (in which [a, b] is a

convex set) to the setting of Rn:

Theorem 10.3.A. Brouwer’s Fixed Point Theorem.

If K is a compact, convex subset of Rn and the mapping T : K → K is continuous,

the T has a fixed point.

Royden and Fitzpatrick give as a reference for a proof of Brouwer’s Fixed Point

Theorem the book by Nelson Dunford and Jacob Schwartz, Linear Operators, Part

I, John Wiley & Sons (1988); see Section V.10, “Fixed Point Theorems,” for a

statement of the result, and see Section V.12, “Notes and Remarks,” for a proof (on

pages 467–469). A proof of Brouwer’s Fixed Point Theorem is given in Introduction

to Algebraic Topology (not a formal ETSU class, but it should be the second

class in a senior/graduate level sequence with Introduction to Topology [MATH

4357/5357] as the first part) in the special case that the compact, convex set is

the closed unit disc in R2. See my online notes for Introduction to Algebraic

Topology on Section 55. Retractions and Fixed Points (Theorem 55.6). Below, we

https://faculty.etsu.edu/gardnerr/4257-Numerical-Analysis/Notes-NA/Numerical-Analysis-BFB10-2-2.pdf
https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-55.pdf
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will state and prove the Banach Contraction Principle which has a more restrictive

condition on the mapping that does Brouwer’s Fixed Point Theorem (namely, it

requires the mapping to be a “contraction”), but only requires that the space under

consideration to be complete (as opposed to the requirement of Brouwer’s Fixed

Point Theorem which requires that we deal with a compact, convex subset of Rn).

Definition. A mapping T from a metric space (X, ρ) into itself is Lipschitz if there

is a number c ≥ 0, called the Lipschitz constant for the mapping, for which

ρ(T (u), T (v)) ≤ c ρ(u, v) for all u, v ∈ X.

If c < 1, the Lipschitz mapping is a contraction.

Note. For an introduction to Lipschitz functions, see my online notes for Complex

Analysis 1 (MATH 5510) on Supplement. A Primer on Lipschitz Functions. In

this supplement, properties of continuously differentiable, locally Lipschitz, conti-

nuity, Lipschitz, uniformly continuous, and continuous are compared for real-valued

functions of a real variable (often on a compact set of real numbers).

Theorem 10.3.B. The Banach Contraction Principle.

Let X be a complete metric space and the mapping T : X → X be a contract.

Then T : X → X has exactly one fixed point.

https://faculty.etsu.edu/gardnerr/5510/CSPACE.pdf
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Note. Notice that the proof of the Banach Contraction Principle is constructive in

nature. It claims the existence of a fixed point and then an algorithm is presented to

that actually produces the fixed point (as a limit). Notice how this contrasts with

the claim of the existence of a fixed point of function f : [a, b] → R where f([a, b]) ⊆

[a, b] in Note 10.3.A. In that example, the existence of a fixed point is established

using the Intermediate Value Theorem, but there is no information on what the

fixed point is (though in that case, the bisection method can be used to approximate

the fixed point to any desired degree of accuracy; see my online notes for Numerical

Analysis [MATH 4257/5257] on Section 2.1. The Bisection Method). In terms of

numerical approximations, we see in the proof of the Banach Contraction Principle

that, for initial point x0, we have ρ(xm, xk) ≤
ck

1− c
ρ(T (x0), x0) if m > k (where

xn is the kth iterate of T applied to x0, xn = T n(xk)). In particular, with x∗ as

the (unknown) fixed point of T then we have (by continuity of the metric, see Note

9.3.A)

ρ(x∗, xk) ≤
ck

1− c
ρ(T (x0), x0) for every k ∈ N.

Therefore, we can approximate x∗ to any desired level of accuracy by making k

sufficiently large so that the right hand side of the previous inequality is smaller

than the desired level of accuracy.

Note. The Banach Contraction Principle is also sometimes called the “Contrac-

tion Mapping Theorem.” The Contraction Mapping Theorem is also covered in

Fundamentals of Functional Analysis (MATH 5740), though specific applications

are not presented in that class. See my online notes on Section 2.12. Fixed Points

and Contraction Mappings; notice Theorem 2.44. It may also be covered in Ap-

https://faculty.etsu.edu/gardnerr/4257-Numerical-Analysis/Notes-NA/Numerical-Analysis-BFB10-2-1.pdf
https://faculty.etsu.edu/gardnerr/Func/notes/2-12.pdf
https://faculty.etsu.edu/gardnerr/Func/notes/2-12.pdf
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plied Math 1 (MATH 5610). See my online notes for Applied Math 1 (these are

the version of the notes used in the fall 1996 class) on Section 3.3. The Contraction

Mapping Theorem; notice Theorem 3.3.1. In this version of the Applied Math class,

the Contraction Mapping Theorem is used to prove the existence of a solution to

an initial value problem of the form f ′(x) = g(x, f(x)), f(x0) = y0 where g(x, y)

is continuous and Lipschitz; see Theorem 3.4.2 in the notes on Section 3.4. The

Initial Value Problem for One Scalar Differential Equation. We state and prove

this result below (see the Picard Local Existence Theorem).

Note 10.3.C. We now briefly discuss solutions of (nonlinear) differential equations.

Let O be an open subset of the plane R2 that contains the point (x0, y0). We

consider the problem of, given function g : O → R, finding an open interval of real

numbers I containing x0 and a differentiable function f : I → R such that

f ′(x) = g(x, f(x)) for all x ∈ I

f(x0) = y0.
(14)

A special case is when g is independent of its second variable and g(x, y) = h(x). In

the event that h is continuous, we have by the Fundamental Theorem of Calculus,

Part 1 (see my online notes for Calculus 1 [MATH 1910] on Section 5.4. The Fun-

damental Theorem of Calculus; notice Theorem 5.4(a)) that the unique solution of

(14) is given by

f(x) = y0 +

∫ x

x0

h(t) dt for all x ∈ I.

Notice that this is a “symbolic” solution; to find a more useful solution requires

us to find an antiderivative of h on I. You see the difficulty of this in Calculus 2

(MATH 1920) when you learn techniques of integration. If h is analytic on I (a

https://faculty.etsu.edu/gardnerr/Differential-Equations/DE-Waltman-notes/Waltman-3-3.pdf
https://faculty.etsu.edu/gardnerr/Differential-Equations/DE-Waltman-notes/Waltman-3-3.pdf
https://faculty.etsu.edu/gardnerr/Differential-Equations/DE-Waltman-notes/Waltman-3-4.pdf
https://faculty.etsu.edu/gardnerr/Differential-Equations/DE-Waltman-notes/Waltman-3-4.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s4-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s4-14E.pdf
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condition much more restrictive than continuity), then it is easy to find a power

series representation for a solution. For a general continuous real-valued function

of two variables g (that is, g is not independent of the second variable), if function

f : I → R is continuous and (x, f(x)) ∈ O for each x ∈ I, then f is a solution of

the differential equation (14) if and only if (again, by the Fundamental Theorem

of Calculus)

f(x) = y0 +

∫ x

x0

g(t, f(t)) dt for all x ∈ I. (15)

Equation (15) is an integral equation in unknown function f . We use this repre-

sentation of differential equation (14) in the proof of the Picard Local Existence

Theorem, which gives the existence (“locally”) of a unique solution of the DE (14).

Theorem 10.3.C. The Picard Local Existence Theorem.

Let O be an open subset of the plane R2 containing the point (x0, y0). Suppose the

function g : O → R2 is continuous and there is a positive number M for which the

following Lipschitz property in the second variable holds uniformly with respect to

the first variable:

|g(x, y1)− g(x, y2)| ≤ M |y1 − y2| for all points (x, y1) and (x, y2) in O. (16)

Then there is an open interval I containing x0 on which the following differential

equation has a unique solution:

f ′(x) = g(x, f(x)) for all x ∈ I

f(x0) = y0.
(14)
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