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Section 11.3. Countability and Separability

Note. In this brief section, we introduce sequences and their limits. This is applied

to topological spaces with certain types of bases.

Definition. A sequence {xn} in a topological space X converges to a point x ∈ X

provided for each neighborhood U of x, there is an index N such that n ≥ N , then

xn belongs to U . The point x is a limit of the sequence.

Note. We can now elaborate on some of the results you see early in a senior

level real analysis class. You prove, for example, that the limit of a sequence of

real numbers (under the usual topology) is unique. In a topological space, this

may not be the case. For example, under the trivial topology every sequence

converges to every point (at the other extreme, under the discrete topology, the

only convergent sequences are those which are eventually constant). For an ad-

ditional example, see Bonus 1 in my notes for Analysis 1 (MATH 4217/5217)

at: http://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf. In a Hausdorff

space (as in a metric space), points can be separated and limits of sequences are

unique.

Definition. A topological space (X,T ) is first countable provided there is a count-

able base at each point. The space (X,T ) is second countable provided there is a

countable base for the topology.
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Example. Every metric space (X, ρ) is first countable since for all x ∈ X , the

countable collection of open balls {B(x, 1/n)}∞
n=1

is a base at x for the topology

induced by the metric.

Example. The base of all intervals of real numbers with rational endpoints for

the usual topology shows that the usual topology on R is second countable.

Proposition 11.9. Let (X,T ) be a first countable topological space. For a subset

E of X , a point x ∈ X is a point of closure of E if and only if x is a limit point

of a sequence in E. Therefore, a subset E of X is closed if and only if whenever a

sequence in E converges to x ∈ X , the point x belongs to E.

Note. The hypothesis of first countable is necessary in Proposition 11.9. In Prob-

lem 11.22(ii) you are asked to show that there is a point of closure of a set that is

not a limit of a sequence in the set—the space is not first countable.

Definition. A subset E of topological space (X,T ) is dense in X provided every

open set in T contains a point of E. (X,T ) is separable it it has a countable dense

subset.

Note. If E is dense then E = X . Of course, Q is dense in R under the usual

topology (and so R is separable).
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Note. In Proposition 9.25, it is shown that a metric space is second countable if

and only if it is separable. In a general topological space, second countable implies

separable (Problem 11.19) but a separable space (even one which is first countable)

may fail to be second countable (Problem 11.21).

Definition. A topological space is metrizable provided the topology is induced by

a metric.

Note. Since every metric space is normal (Proposition 11.7), then we see that

any non-normal topological space is not metrizable. For example, any topological

space under the trivial topology is not metrizable. We desire to classify metrizable

spaces. The following result classifies second countable topological spaces. The

proof is given in section 12.1 (see page 242).

Theorem. The Urysohn Metrization Theorem.

Let (X,T ) be a second countable topological space. Then (X,T ) is metrizable if

and only if it is normal.

Note. Royden and Fitzpatrick mention the Nagata-Smirnov-Bing Metrization

Theorem which classifies metrizable topological spaces. We now briefly explain

this result by quoting John Kelley’s General Topology (Van Nostrand Co., 1955).

You can find a PDF of this book at archive.org at (accessed 5/1/2015):

https://ia700608.us.archive.org/23/items/

GeneralTopology/Kelley-GeneralTopology.pdf.
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Definition. (Kelley, pages 126 and 127.) A family A of subsets of a topological

space is locally finite provided each point of the space has a neighborhood which

intersects only finitely many members of A. A family A is discrete if each point

of the space has a neighborhood which intersects at most one member of A. A

family A is σ-locally finite if and only if it is the union of a countable number of

locally finite subfamilies. A family A is σ-discrete if and only if it is the union of

a countable number of discrete subfamilies.

Theorem. The Metrization Theorem. (Kelley, page 127.)

The following three condition on a topological space are equivalent.

(a) The space is metrizable.

(b) The space is regular and the topology has a σ-locally finite base.

(c) The space is regular and the topology has a σ-discrete base.

Note. In Kelley’s book, he states parts (b) and (c) of the Metrization Theorem

as requiring the space to be “T1 and regular.” A space is T1 if singletons form

closed sets. Royden and Fitzpatrick define a “regular space” to be one which

also satisfies the Tychonoff separation property, and we know by Proposition 11.6

that every singleton forms a closed set in a Tychonoff space. So Royden and

Fitzpatrick’s “regular” is equivalent to Kelley’s “T1 and regular.” So we have

stated the Metrization Theorem using Royden and Fitzpatrick’s terminology.
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