Section 11.4. Continuous Mappings Between Topological Spaces

Note. In this section, we deal with continuous functions and some of their properties.

Note. The following definition is a parallel to the standard ε -δ definition of continuity where the "for all $\varepsilon > 0$ " has been replaced with "for any neighborhood" and "there exists $\delta > 0$ " has been replaced with "there exists a neighborhood."

Definition. For topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) , a mapping $f : X \to Y$ is continuous at a point $x_0 \in X$ provided that for any neighborhood $\mathcal O$ of $f(x_0)$, there exists a neighborhood U of x_0 for which $f(U) \subseteq \mathcal{O}$. f is continuous if it is continuous at each point in X.

Proposition 11.10. A mapping $f : X \to Y$ between topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) is continuous if and only if for any subset $\mathcal{O} \in \mathcal{S}$, its inverse image under $f, f^{-1}(\mathcal{O}) \in \mathcal{T}.$

Proposition 11.11. The composition of continuous mappings between topological spaces when defined, is continuous.

Note. The straightforward proof of Proposition 11.11 is Problem 11.26.

Definition. Given two topologies \mathcal{T}_1 and \mathcal{T}_2 for a set X, if $\mathcal{T}_2 \subseteq \mathcal{T}_1$, then \mathcal{T}_2 is weaker than T_1 and T_1 is stronger than T_2 .

Note. The more open sets a topology has, the "harder" it is for sequences to converge (for example)—thus the use of "stronger" and "weaker."

Proposition 11.12. Let X be a nonempty set and S any collection of subsets of X that covers X. The collection of subsets of X consisting of intersections of finite subcollections of S is a base for a topology T for X. It is the weakest topology containing S in the sense that if \mathcal{T}' is any other topology for X containing S then $T \subseteq T'.$

Note. The proof of Proposition 11.12 is left as Problem 11.27.

Definition. Let X be a nonempty set and consider a collection of mappings $\mathcal{F} = \{f_{\alpha} : X \to X_{\alpha}\}_{{\alpha \in {\Lambda}}}$, where each X_{α} is a topological space. The weakest topology for X that contains the collection of sets

$$
\mathcal{F} = \{ f_{\alpha}^{-1}(\mathcal{O}_{\alpha}) \mid f_{\alpha} \in \mathcal{F}, \mathcal{O}_{\alpha} \text{ open in } X_{\alpha} \}
$$

is the *weak topology* for X induced by \mathcal{F} .

Note. The following result more clearly elaborates on the meaning of the weak topology.

Proposition 11.13. Let X be a nonempty set and $\mathcal{F} = \{f_{\lambda} : X \to X_{\lambda}\}_{\lambda \in \Lambda}$ a collection of mappings where each X_{λ} is a topological space. The weak topology for X induced by $\mathcal F$ is the topology on X that has the fewest number of sets among the topologies on X for which each mapping $f_{\lambda}: X \to X_{\lambda}$ is continuous.

Definition. A continuous mapping from a topological space (X, \mathcal{T}) to a topological space (Y, S) is a *homeomorphism* provided it is one to one, maps X onto Y, and has continuous inverse f^{-1} from Y to X. If there is a homeomorphism between two topological spaces, the spaces are homeomorphic.

Note. Homeomorphic topological spaces are indistinguishable from each other as topological spaces. So if $f : (X, \mathcal{T}) \to (Y, \mathcal{S})$ is a homeomorphism then $E \subseteq X$ is open in (X, \mathcal{T}) if and only if $f(E)$ is open in S. However, this does not mean that the two spaces share other properties. In the next example, we show that $L^1(E)$ is homeomorphic to $L^2(E)$ for measurable set E.

Example. Mazur's Example.

Let $E \subseteq \mathbb{R}$ be Lebesgue measurable. For $f \in L^1(E)$, define function $\Phi(f)$ on E by $\Phi(f)(x) = \text{sgn}(f(x)) |f(x)|^{1/2}$. Then $\Phi(f)$ clearly belongs to $L^2(E)$. We "leave as an exercise" (a tedious one) to show that for any $a, b \in \mathbb{R}$ we have

$$
|\text{sgn}(a)|a|^{1/2} - \text{sgn}(b)|b|^{1/2}| \le 2|a-b|.
$$

If follows from this that $\|\Phi(f) - \Phi(g)\|_2^2 \le 2||f - g||_1$ for all $f, g \in L^1(E)$. So Φ is a continuous mapping (to make $\|\Phi(f) - \Phi(g)\|_2 < \varepsilon$, consider $f, g \in L^1(E)$ such that $||f - g||_1 < \delta = \varepsilon^2/2$. In fact, we see that Φ is uniformly continuous on $L^1(E)$. Also Φ is one to one since $\Phi(f) = \Phi(g)$ implies that $f = g$. Now Φ is onto $L^2(E)$ since its inverse is $\Phi^{-1}(f)(x) = \text{sgn}(f(x)) |f(x)|^2$ for $f \in L^2(E)$:

$$
\Phi(\text{sgn}(f(x))|f(x)|^2) = \text{sgn}(\text{sgn}(f(x))|f(x)|)|\text{sgn}(f(x))|f(x)|^2|^{1/2}
$$

$$
= \text{sgn}(f(x))|f(x)| = f(x).
$$

Problem 11.38 gives that for all $a, b \in \mathbb{R}$, $|\text{sgn}(a)|a|^2 - \text{sgn}(b)|b|^2| \leq 2|a-b|(|a|+|b|)$. Therefore $\|\Phi^{-1}(f) - \Phi^{-1}(g)\|_1 \leq 2\|f - g\|_2^2$ $\frac{2}{2}(\|f\|_2^2 + \|g\|_2^2)$ 2²). So $\Phi^{-1}: L^2(E) \to L^1(E)$ is continuous: For given $f \in L^2(E)$, to make $\Phi^{-1}(f) - \Phi^{-1}(g) \|_1 < \varepsilon$, consider $g \in L^2(E)$ such that $||f - g||_2 < \delta$ where $\delta = \min{||f||_2, \sqrt{\varepsilon}/(\sqrt{10}||f||_2)}$. We have for $\|f-g\|_2 < \delta$ that $\|g\|_2 < \|f\|_2 + \delta < 2\|f\|_2$ and so

$$
\|\Phi^{-1}(f) - \Phi^{-1}(g)\|_1 \le 2\|f - g\|_2^2 (\|f\|_2^2 + \|g\|_2^2) < 2\|f - g\|_2^2 (\|f_2^2 + (2\|f\|_2)^2)
$$

= 10 $\|f - g\|_2^2 \|f\|_2^2 < 10 \left(\frac{\sqrt{\varepsilon}}{\sqrt{10}\|f\|_2}\right)^2 \|f\|_2^2 = \varepsilon.$

Therefore $\Phi: L^1(E) \to L^2(E)$ is a homeomorphism and $L^1(E)$ is (topologically) isomorphic to $L^2(E)$. Of course, as Banach spaces, $L^1(E)$ and $L^2(E)$ are quite different.

Revised: 12/21/2016