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Section 12.3. The Stone-Weierstrass Theorem

Note. In this section, we state and prove a result concerning continuous real-

valued functions on a compact Hausdorff space. Royden and Fitzpatrick motivate

this result by stating “one of the jewels of classical analysis:”

The Weierstrass Approximation Theorem.

Let f be a continuous real-valued function on a closed, bounded interval [a, b].

Then for each ε > 0, there is a polynomial p for which |f(x) − p(x)| < ε for all

x ∈ [a, b].

Note. Anton R. Schep of the University of South Carolina has a nice, concise and

self-contained proof of the Weierstrass Approximation Theorem posted online at:

http://people.math.sc.edu/schep/weierstrass.pdf

Dr. Schep’s proof is essentially the proof of Weierstrass, which appeared originally

in “Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer

reellen Veränderlichen,” Sitzungsberichte der Kniglich Preuischen Akademie der

Wissenschaften zu Berlin, 1885 (11).

Definition. For compact Hausdorff space X , define the linear space C(X) of con-

tinuous real-valued functions on X with the maximum norm ‖f‖ = maxx∈X |f(x)|.

Note. The Weierstrass Approximation Theorem implies that the polynomials are

dense in C([a, b]) (as a normed linear space).
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Definition. A linear subspace A of C(X) is an algebra if the product of any two

functions in A belongs to A. A collection A of real-valued functions on X is said

to separate points in X provided for any two distinct points u and v in X , there is

an f in A for which f(u) 6= f(v).

Lemma. For X compact and Hausdorff, the whole algebra C(X) of all real-valued

functions separates points in X .

Proof. By Theorem 11.18, X is normal. By definition, a normal space is Tychonoff

and by Proposition 11.6, singletons are closed sets in a Tychonoff space. Then by

Urysohn’s Lemma, for any two points u, v ∈ X (since {u} and {v} are closed) and

any interval [a, b] (a 6= b) there is a continuous f : X → R such that f(u) = a 6=

b = f(v). Since f ∈ C(X), then C(X) separates points in X .

Note. The topic of this section is a generalization of the Weierstrass Approxima-

tion Theorem. It is the following.

The Stone-Weierstrass Approximation Theorem.

Let X be a compact Hausdorff space. Suppose A is an algebra of continuous

real-valued functions on X that separates points in X and contains the constant

functions. Then A is dense in C(X).
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Note. The above result is a generalization of the Weierstrass Approximation as

follows. We take A to be the collection of all polynomials on [a, b]. Then A is

an algebra since a product of polynomials is a polynomial. Also, linear functions

separate points. So the Stone-Weierstrass Theorem implies thatA is dense in C(X).

(Notice that we cannot take the linear terms alone since a product of mx + b-type

functions is not again of type mx + b.)

Note. The Stone-Weierstrass Theorem generalizes the Weierstrass Theorem and

was first proved by Marshall Stone in 1937, hence the name. Before the proof, we

need two preliminary lemmas.

Lemma 12.7. Let X be a compact Hausdorff space and A an algebra of continuous

functions on X that separates points and contains the constant functions. Then

for each closed subset F of X and point x0 ∈ X ∼ F , there is a neighborhood U of

x0 that is disjoint from F and has the following property: For each ε > 0 there is

a function h ∈ A for which

h < ε on U , h > 1 − ε on F, and 0 ≤ h ≤ 1 on X. (10)

Lemma 12.8. Let X be a compact Hausdorff space and A an algebra of continuous

functions on X that separates points and contains the constant functions. Then

for each pair of disjoint closed subsets A and B of X and ε > 0, there is a function

h belonging to A for which

h < ε on A, h > 1 − ε on B, and 0 ≤ h ≤ 1 on X.
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Note. We now have the equipment to prove the Stone-Weierstrass Theorem.

Note. We now state and prove a result showing that separability and metrizability

are intimately related.

Borsuk’s Theorem.

Let X be a compact Hausdorff topological space. Then C(X) is separable if and

only if X is metrizable.
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