Section 12.3. The Stone-Weierstrass Theorem

Note. In this section, we state and prove a result concerning continuous realvalued functions on a compact Hausdorff space. Royden and Fitzpatrick motivate this result by stating "one of the jewels of classical analysis:"

The Weierstrass Approximation Theorem.

Let f be a continuous real-valued function on a closed, bounded interval [a, b]. Then for each $\varepsilon > 0$, there is a polynomial p for which $|f(x) - p(x)| < \varepsilon$ for all $x \in [a, b]$.

Note. Anton R. Schep of the University of South Carolina has a nice, concise and self-contained proof of the Weierstrass Approximation Theorem posted online at:

http://people.math.sc.edu/schep/weierstrass.pdf

Dr. Schep's proof is essentially the proof of Weierstrass, which appeared originally in "Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen," *Sitzungsberichte der Kniglich Preuischen Akademie der Wissenschaften zu Berlin*, 1885 (11).

Definition. For compact Hausdorff space X, define the linear space C(X) of continuous real-valued functions on X with the maximum norm $||f|| = \max_{x \in X} |f(x)|$.

Note. The Weierstrass Approximation Theorem implies that the polynomials are dense in C([a, b]) (as a normed linear space).

Definition. A linear subspace \mathcal{A} of C(X) is an *algebra* if the product of any two functions in \mathcal{A} belongs to \mathcal{A} . A collection \mathcal{A} of real-valued functions on X is said to *separate points* in X provided for any two distinct points u and v in X, there is an f in \mathcal{A} for which $f(u) \neq f(v)$.

Lemma. For X compact and Hausdorff, the whole algebra C(X) of all real-valued functions separates points in X.

Proof. By Theorem 11.18, X is normal. By definition, a normal space is Tychonoff and by Proposition 11.6, singletons are closed sets in a Tychonoff space. Then by Urysohn's Lemma, for any two points $u, v \in X$ (since $\{u\}$ and $\{v\}$ are closed) and any interval [a, b] ($a \neq b$) there is a continuous $f : X \to \mathbb{R}$ such that $f(u) = a \neq$ b = f(v). Since $f \in C(X)$, then C(X) separates points in X.

Note. The topic of this section is a generalization of the Weierstrass Approximation Theorem. It is the following.

The Stone-Weierstrass Approximation Theorem.

Let X be a compact Hausdorff space. Suppose \mathcal{A} is an algebra of continuous real-valued functions on X that separates points in X and contains the constant functions. Then \mathcal{A} is dense in C(X).

Note. The above result is a generalization of the Weierstrass Approximation as follows. We take \mathcal{A} to be the collection of all polynomials on [a, b]. Then \mathcal{A} is an algebra since a product of polynomials is a polynomial. Also, linear functions separate points. So the Stone-Weierstrass Theorem implies that \mathcal{A} is dense in C(X). (Notice that we cannot take the linear terms alone since a product of mx + b-type functions is not again of type mx + b.)

Note. The Stone-Weierstrass Theorem generalizes the Weierstrass Theorem and was first proved by Marshall Stone in 1937, hence the name. Before the proof, we need two preliminary lemmas.

Lemma 12.7. Let X be a compact Hausdorff space and \mathcal{A} an algebra of continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point $x_0 \in X \sim F$, there is a neighborhood \mathcal{U} of x_0 that is disjoint from F and has the following property: For each $\varepsilon > 0$ there is a function $h \in \mathcal{A}$ for which

$$h < \varepsilon \text{ on } \mathcal{U}, h > 1 - \varepsilon \text{ on } F, \text{ and } 0 \le h \le 1 \text{ on } X.$$
 (10)

Lemma 12.8. Let X be a compact Hausdorff space and \mathcal{A} an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and $\varepsilon > 0$, there is a function h belonging to \mathcal{A} for which

$$h < \varepsilon$$
 on $A, h > 1 - \varepsilon$ on B , and $0 \le h \le 1$ on X .

Note. We now have the equipment to prove the Stone-Weierstrass Theorem.

Note. We now state and prove a result showing that separability and metrizability are intimately related.

Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then C(X) is separable if and only if X is metrizable.

Revised: 12/31/2016