Chapter 2. Lebesgue Measure

Section 2.1. Introduction

Note. We “weigh” an interval by its length when setting up the Riemann integral. So to generalize the Riemann integral, we desire a way to weigh sets other than intervals. This weight should be a generalization of the length of an interval.

Note. Since we know an open set is a countable union of disjoint open intervals, we would define its “weight” (or “measure”) to be the sum of the lengths of the open intervals which compose it.

Note. We want a function m which maps the collection of all subsets of \mathbb{R}, that is the power set of the reals $\mathcal{P}(\mathbb{R})$, into $\mathbb{R}^+ \cup \{0, \infty\} = [0, \infty]$. We would like m to satisfy:

1. For any interval I, $m(I) = \ell(I)$ (where $\ell(I)$ is the length of I).
2. For all E on which m is defined and for all $y \in \mathbb{R}$, $m(E + y) = m(E)$. That is, m is translation invariant.
3. If $\{E_k\}_{k=1}^\infty$ is a sequence of disjoint sets (on each of which, m is defined), then $m(\bigcup E_k) = \sum m(E_k)$. That is, m is countably additive.
4. m is defined on $\mathcal{P}(\mathbb{R})$.

Here, and throughout, we use the symbol \cup to indicate disjoint union.
Note. We will see in Section 2.6 that there is not a function satisfying all four properties. In fact, there is not even a set function satisfying (1), (2), and (4) for which \(m(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m(E_k) \) for disjoint \(E_k \) (this property is called finite additivity). See Theorem 2.18 for details.

Note. It is “unknown” whether \(m \) exists satisfying properties (1), (3), and (4) (if we assume the Continuum Hypothesis, then there is not such a function).

Note. We will weaken Property (4) and try to find a function defined on as large a set as possible. We will require (by (3)) that our collection of sets, \(\mathcal{M} \), on which \(m \) is defined, be countably additive and therefore \(\mathcal{M} \) will be a \(\sigma \)-algebra.

Problem 2.1. Let \(m' \) be a set function defined on a \(\sigma \)-algebra \(\mathcal{A} \) with values in \([0, \infty] \). Assume \(m' \) is countably additive over countable disjoint collections in \(\mathcal{A} \). If \(A \) and \(B \) are two sets in \(\mathcal{A} \) with \(A \subset B \), then \(m'(A) \leq m'(B) \). This is called monotonicity.

Note. Another property of measure is the following.

Problem 2.3. Let \(\{E_k\}_{k=1}^{\infty} \) be a countable collection of sets in a \(\sigma \)-algebra \(\mathcal{A} \) on which a countably additive measure \(m' \) is defined. Then \(m'(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m'(E_k) \). This is called countable subadditivity.