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Chapter 9. Metric Spaces:

General Properties

Note. In this chapter, we consider “abstract” metric spaces, which consist simply

of a set of points X and a metric which gives an idea of the distance between

any two elements of X. The existence of a metric lets us study all analysis ideas

including open sets, closed sets, compact sets, limits, continuity, completeness, and

separability. This is similar to our study of normed linear spaces, but we assume

no linear structure in a metric space.

Section 9.1. Examples of Metric Spaces

Note. In this section we give the basic definitions of metric spaces and present a

few examples.

Definition. Let X be a nonempty set. A function ρ : X × X → R is a metric

provided for all x, y, z ∈ X we have

(i) ρ(x, y) ≥ 0.

(ii) ρ(x, y) = 0 if and only if x = y.

(iii) ρ(x, y) = ρ(y, x).

(iv) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) (The Triangle Inequality).

Set X together with metric ρ is a metric space, denoted (X, ρ).
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Example. Of course X = R and ρ(x, y) = |x− y| is a metric space.

Example. If X is a normed linear space with norm ‖ · ‖ then X is a metric

space where ρ(x, y) = ‖x− y‖. Therefore normed linear space Rn under the usual

Euclidean norm, Lp(E) under the Lp norm, and C([a, b]) under the max norm are

all metric spaces.

Example. For any nonempty set X, the discrete metric ρ defined by ρ(x, y) = 0

if x = y and ρ(x, y) = 1 if x 6= y is a metric space. Therefore every nonempty

set can have a metric on it. Similarly, any linear space X has a norm on it, say

‖x‖ = ρ(0, x) where 0 is the zero vector in X and ρ is the discrete metric.

Example. For metric space (X, ρ), let Y be a nonempty subset of X. Then the

restriction of ρ to Y ×Y defines a metric on Y . (Y, ρ) is a metric subspace of (X, ρ).

Example. For metric spaces (X, ρ1) and (X2, ρ2), define the metric product τ on

X1 × X2 as τ((x1, x2), (y1, y2)) =
{
ρ1(x1, y1)

2 + ρ2(x2, y2)
2
}1/2

. By Exercise 9.10,

(X1 × X2, τ) is a metric space (in fact, Exercise 9.10 shows that this idea can be

extended to a countable product, with sufficient care).

Definition. Two metrics ρ and σ on a set X are equivalent if there are positive

numbers c1 and c2 such that for all x1, x2 ∈ X, c1σ(x1, x2) ≤ ρ(x1, x2) ≤ c2σ(x1, x2).
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Note. Metric spaces have little structure so the idea of an “isomorphism” in the

metric space setting is fairly weak, as seen in the following definition.

Definition. A mapping f from a metric space (X, ρ) to a metric space (Y, σ) is an

isometry if it maps X onto Y and for all x1, x2 ∈ X, σ(f(x1), f(x2)) = ρ(x1, x2).

When such an isometry exists, (X, ρ) and (Y, σ) are isometric.

Note. An isometry is one to one since x1 6= x2 implies ρ(x1, x2) 6= 0 and hence

σ(f(x1), f(x2)) 6= 0 and f(x1) 6= f(x2).

Definition. Let X be a nonempty set. A function ρ : X×X → R is a pseudometric

if for all x, y, z ∈ X we have

(i) ρ(x, y) ≥ 0.

(ii) ρ(x, y) = ρ(y, x).

(iii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) (The Triangle Inequality).

Set X together with pseudometric ρ is a pseudometric space, denoted (X, ρ).

Note. In a pseudometric space (X, ρ) we can define an equivalence relation x ∼= y

provided ρ(x, y) = 0. We can then define a metric on the space of equivalence

classes as ρ̃([x], [y]) = ρ(x, y). We denote the resulting metric space of equivalence

classes as (X/ ∼=, ρ̃). This is how we dealt with the Lp spaces where the equivalence

classes consistent of functions equal a.e.

Revised: 4/6/2023


