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Section 9.4. Complete Metric Spaces

Note. Royden and Fitzpatrick declare “the structure of a metric space is too bar-

ren [by itself] to be fruitful in the study of interesting problems in mathematical

analysis.” See page 193. In this section we consider the property of complete-

ness defined in terms of Cauchy sequences. We need completeness to do “analysis

things” like limits and continuity.

Note. Recall that the Axiom of Completeness for the real numbers states that

“Every set of real numbers with an upper bound has a least upper bound.” The

real numbers are then defined to be the complete ordered field. See my online notes

for Analysis 1 (MATH 4217/5217) on Section 1.2. Properties of the Real Numbers

as an Ordered Field and Section 1.3. The Completeness Axiom. Since we have

no ordering in a metric space, we cannot use the least upper bound approach to

completeness in a metric space (we cannot even use it in the complex setting since

the complex numbers do not form an ordered field).

Note. Recall that a sequence of real numbers is convergent if and only if it

is Cauchy; see Exercise 2.3.13 in my Analysis 1 notes on Section 2.3. Bolzano-

Weierstrass Theorem. This result (the proof of which requires the Axiom of Com-

pleteness) inspires our definition of completeness. This is the same approach to

completeness we took in normed linear spaces in Section 7.3. Lp is Complete: The

Riesz-Fischer Theorem.

https://faculty.etsu.edu/gardnerr/4217/notes/1-2.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-2.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/7-3.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/7-3.pdf


9.4. Complete Metric Spaces 2

Definition. A sequence {xn} in a metric space (X, ρ) is a Cauchy sequence if for

each ε > 0 there is N ∈ N for which

if m, n ≥ N then ρ(xn, xm) < ε.

Definition. A metric space X is complete if every Cauchy sequence in X converges

to a point in X.

Note. The real numbers form a metric space with the usual metric and under this

metric, a sequence or real numbers is Cauchy if and only if it is convergent (see

Exercise 2.3.13 from Analysis 1, as mentioned above). So the previous definition is

consistent with our first exposure to completeness in R.

Proposition 9.10. Let [a, b] be a closed, bounded interval of real numbers. Then

C([a, b]), with the metric induced by the max norm, is complete.

Note. We have not previously considered subspaces of complete spaces. A quick

observation shows that a metric subspace of a complete space may not be complete.

For example, an open bounded interval of the real numbers is not complete, but R

is. Also, Q is a metric subspace of R, but Q is not complete. The next result gives

a classification of complete metric subspaces of a complete metric space.

Proposition 9.11. If E is a subset of the complete metric space X, then the

metric subspace E is complete if and only if E is a closed subset of X.
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Note. Since Rn, Lp(E) for 1 ≤ p ≤ ∞, and C[a, b] are all complete, then Proposi-

tion 9.11 implies the following.

Proposition 9.12. The following are complete metric spaces:

(i) Each nonempty closed subset of Euclidean space Rn.

(ii) For E a measurable set of real numbers and 1 ≤ p ≤ ∞, each nonempty

closed subset of Lp(E).

(iii) Each nonempty closed subset of C[a, b].

Note. We now use a metric to define the diameter of a set. You will notice that

this is very similar to the definition of the diameter of a graph in graph theory;

see my online notes for Graph Theory 1 (MATH 5340) on Section 3.1. Walks and

Connection. However, in a connected graph we use a maximum distance and here

we use a supremum. So we may have sets of infinite diameter, since a supremum

can be ∞.

Definition. For a nonempty subset E of a metric space (X, ρ), the diameter of E,

denoted diam(E), as

diam(E) = sup{ρ(x, y) | x, y ∈ E}.

Set E is bounded provided it has a finite diameter. A descending sequence {Em}∞n=1

of nonempty subset of X is a contracting sequence provided limn→∞ diam(En) = 0.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-3-1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-3-1.pdf
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Note. We now characterize complete metric spaces in terms of contracting se-

quences of nonempty closed sets.

Theorem 9.4.A. The Cantor Intersection Theorem. Let X be a metric space.

Then X is complete if and only if whenever {Fn}∞n=1 is a contracting sequence of

nonempty closed subsets of X, there is a point x ∈ X for which ∩∞n=1Fn = {x}.

Note. We might think of the Cantor Intersection Theorem as implying that a

metric space that is not complete has “holes” in it. If a contracting sequence of

nonempty closed subsets of X is empty, then the hole is where the point x would

be if the space were complete and formed a continuum. This is the situation, for

example, for Q as a subspace of R. The rational numbers Q has a hole at
√

2,

and this is revealed by considering the contracting sequence of closed nonempty

sets Fn = (
√

2 − 1/n,
√

2 + 1/n) ∩ Q (these are in fact closed sets in metric space

Q). We have ∩n
i=1Fn = ∅ in metric space Q. Of course we could plug this hole by

simply adding
√

2 and considering the metric space Q ∪ {
√

2}. But then there are

other holes. . . If we plug all of the holes, then we get R. The next result (the proof

of which is outlined in Problem 9.49) shows that all of the holes of an incomplete

metric space can be plugged.

Theorem 9.13. Let (X, ρ) be a metric space. Then there is a complete metric

space (X̃, ρ̃) for which X is a dense subset of X̃ and

ρ(u, v) = ρ̃(u, v) for all u, v ∈ X.
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Definition. The metric space (X̃, ρ̃) is the completion of metric space (X, ρ).

Note. Any two completions of a metric space are isometric by way of an isometry

that is the identity mapping on X. This is to be proved in Problem 9.50.

Note. A proof of Theorem 9.13 in the setting of normed linear spaces is given in

Fundamentals of Functional Analysis (MATH 5740); see my online notes for this

class on Section 2.5. Completeness and notice the Completion Theorem (Theorem

2.22).
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