Section 54. The Fundamental Group of the Circle

Note. In this section, we tie together the idea of a covering space from the previous section with the idea of the fundamental group from Section 52. We also show that the fundamental group of the circle S^1 is isomorphic to \mathbb{Z}.

Definition. Let $p : E \to B$ be a map between space E and space B. If f is a continuous mapping of some space X into B, then a lifting of f is a map $\tilde{f} : X \to E$ such that $p \circ \tilde{f} = f$.

Note. The diagram for these maps is:

```
\begin{tikzpicture}
  \node (X) at (0,0) {$X$};
  \node (E) at (2,0) {$E$};
  \node (B) at (2,-2) {$B$};
  \draw[->] (X) -- (E) node [above] {$\tilde{f}$};
  \draw[->] (X) -- (B) node [left] {$f$};
  \draw[->] (E) -- (B) node [right] {$p$};
\end{tikzpicture}
```

Example 54.1. Consider the covering $p : \mathbb{R} \to S^1$ of Theorem 53.1. The path $f : [0,1] \to S^1$ given by $f(s) = (\cos(\pi s), \sin(\pi s))$ (a path along S^1 from $b_0 = (1,0)$ to $(-1,0)$) lifts to the path $\tilde{f}(s) = s/2$ in \mathbb{R} beginning at 0 and ending at $1/2$, because $p \circ \tilde{f}$ maps $[0,1]$ to the upper half of S^1 and f maps $[0,1]$ to this same upper half of S_1:
The path \(g(s) = (\cos(\pi s), -\sin(\pi s)) \) lifts to the path \(\tilde{g}(s) = -s/2 \) beginning at 0 and ending at \(-1/2\) (as above, but now involving the lower half of \(S^1 \)). The path \(h(s) = (\cos(4\pi s), \sin(4\pi s)) \) lifts to the path \(\tilde{h}(s) = 2s \) beginning at 0 and ending at 2:

Note. In the next two results, we show that for a covering space, (1) paths can be lifted, and (2) path homotopies can be lifted.

Lemma 54.1. Let \(p : E \to B \) be a covering map, and let \(p(e_0) = b_0 \). Any path \(f : [0, 1] \to B \) beginning at \(b_0 \) has a unique lifting to a path \(f \) in \(E \) beginning at \(e_0 \).
Lemma 54.2. Let $p : E \to B$ be a covering map. Let $p(e_0) = b_0$. Let the map $F : I \times I \to B$ be continuous with $F(0,0) = b_0$. There is a unique lifting of F to a continuous map $\tilde{F} : I \times I \to E$ such that $\tilde{F}(0,0) = e_0$. If F is a path homotopy, then \tilde{F} is a path homotopy.

Note. The next result shows that homotopic paths are lifted to homotopic paths.

Theorem 54.3. Let $p : E \to B$ be a covering map. Let $p(e_0) = b_0$. Let f and g be two paths in B from b_0 to b_1. Let \tilde{f} and \tilde{g} be their respective liftings to paths in E beginning at e_0. If f and g are path homotopic, then \tilde{f} and \tilde{g} end at the same point of E and are path homotopic.

Note. We define a mapping which will be useful in determining the fundamental group of the circle S^1.

Definition. Let $p : E \to B$ be a covering map. Let $b_0 \in B$. Choose e_0 so that $p(e_0) = b_0$. Given an element $[f]$ of $\pi_1(B,b_0)$, let \tilde{f} be the lifting of f to a path in E that begins at e_0 (we know by Lemma 54.1 that \tilde{f} is well-defined in terms of any $f \in [f]$). Let $\varphi([f])$ denote the end point $\tilde{f}(1)$ of \tilde{f}. Then

$$\varphi : \pi_1(B,b_0) \to p^{-1}(b_0).$$

is the lifting correspondence derived from the covering map p.
Theorem 54.4. Let $p : E \to B$ be a covering map. Let $p(e_0) = b_0$. If E is path connected, then the lifting correspondence

$$\varphi : \pi_1(B, b_0) \to p^{-1}(b_0)$$

is surjective (onto). If E is simply connected, it is bijective.

Theorem 54.5. The fundamental group of S^1 is isomorphic to the additive group of integers, \mathbb{Z}.

Note. The previous result justifies our intuitive idea that the fundamental group of S^1 is generated by starting at $(1,0)$ and creating loops that wrap around S^1 a positive integer number of times (counterclockwise) and loops that wrap around S^1 a negative integer number of times (clockwise). The intuitive pasting together of loops corresponds to the binary operation in the fundamental group.

Revised: 5/1/2015