Proposition 0.8

Proposition 0.8. Any neighborhood \(A \) of \(x \in \overline{B} \) has a nonempty intersection with \(B \).

Proof. Let \(\Omega \subset A \) be an open neighborhood of \(x \) (which exists by the definition of "neighborhood"). Assume \(\Omega \cap B = \emptyset \). Then \(E \setminus \Omega \) is closed and \(B \subset E \setminus \Omega \). So (by the definition of closure) \(\overline{B} \subset E \setminus \Omega \). But \(x \in \Omega \) so \(x \in \overline{B} \), contradicting the hypothesis that \(x \in \overline{B} \). So the assumption that \(\Omega \cap B = \emptyset \) is false and hence \(\Omega \) has a nonempty intersection with \(B \) and, since \(\Omega \subset A \), \(A \) has a nonempty intersection with \(B \), as claimed. \(\square \)

Theorem 0.11

Theorem 0.11. The image by a continuous map of a compact set is compact.

Proof. Let \(K \subset E \) be a compact set. Let \(\{\Omega_i\}_{i \in I} \) be an open covering of \(f(K) \). Since \(f \) is continuous then, by the definition of "continuous," each \(f^{-1}(\Omega_i) \) is open in \(E \) and so \(\{f^{-1}(\Omega_i)\}_{i \in I} \) is an open covering of \(K \). Since \(K \) is compact then, by definition of "compact," there is finite set \(J \subset I \) such that \(K \subset \bigcup_{i \in J} f^{-1}(\Omega_i) \). So \(\{\Omega_i\}_{i \in J} \) is a finite subcovering of \(f(K) \). Since \(\{\Omega_i\}_{i \in I} \) is an arbitrary open covering of \(f(K) \), then \(f(K) \) is compact as claimed. \(\square \)

Theorem 0.1.1

Theorem 0.1.1. Let \(E \) and \(F \) be a Hausdorff topological spaces. If \(E \) is compact then any continuous \(f : E \rightarrow F \) is proper.

Proof. Let \(K \subset F \) be compact. Then by Theorem 0.9, \(K \) is closed. By Note 0.1.A, \(f^{-1}(K) \) is a closed subset of \(E \). Since \(E \) is compact, by Theorem 0.9 \(f^{-1}(K) \) is compact. Therefore, by the definition of "proper," \(f \) is proper as claimed. \(\square \)