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Proposition 0.8

Proposition 0.8

Proposition 0.8. Any neighborhood A of x ∈ B has a nonempty
intersection with B.

Proof. Let Ω ⊂ A be an open neighborhood of x (which exists by the
definition of “neighborhood”). ASSUME Ω∩B = ∅. Then E \Ω is closed
and B ⊂ E \Ω. So (by the definition of closure) B ⊂ E \Ω.

But x ∈ Ω so
x ∈ B, CONTRADICTING the hypothesis that x ∈ B. So the assumption
that Ω ∩ B = ∅ is false and hence Ω has a nonempty intersection with B
and, since Ω ⊂ A, A has a nonempty intersection with B, as claimed.
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Theorem 0.11

Theorem 0.11

Theorem 0.11. The image by a continuous map of a compact set is
compact.

Proof. Let K ⊂ E be a compact set. Let {Ωi}i∈I be an open covering of
f (K ). Since f is continuous then, by the definition of “continuous,” each
f −1(Ωi ) is open in E and so {f −1(Ωi )}i∈I is an open covering of K .

Since
K is compact then, by definition of “compact,” there is finite set J ⊂ I
such that K ⊂ ∪i∈J f

−1(Ωi ). So {Ωi}i∈J is a finite subcovering of f (K ).
Since {Ωi}i∈I is an arbitrary open covering of f (K ), then f (K ) is compact
as claimed.

() Differential Geometry April 26, 2019 4 / 5



Theorem 0.11

Theorem 0.11

Theorem 0.11. The image by a continuous map of a compact set is
compact.

Proof. Let K ⊂ E be a compact set. Let {Ωi}i∈I be an open covering of
f (K ). Since f is continuous then, by the definition of “continuous,” each
f −1(Ωi ) is open in E and so {f −1(Ωi )}i∈I is an open covering of K . Since
K is compact then, by definition of “compact,” there is finite set J ⊂ I
such that K ⊂ ∪i∈J f

−1(Ωi ). So {Ωi}i∈J is a finite subcovering of f (K ).
Since {Ωi}i∈I is an arbitrary open covering of f (K ), then f (K ) is compact
as claimed.

() Differential Geometry April 26, 2019 4 / 5



Theorem 0.11

Theorem 0.11

Theorem 0.11. The image by a continuous map of a compact set is
compact.

Proof. Let K ⊂ E be a compact set. Let {Ωi}i∈I be an open covering of
f (K ). Since f is continuous then, by the definition of “continuous,” each
f −1(Ωi ) is open in E and so {f −1(Ωi )}i∈I is an open covering of K . Since
K is compact then, by definition of “compact,” there is finite set J ⊂ I
such that K ⊂ ∪i∈J f

−1(Ωi ). So {Ωi}i∈J is a finite subcovering of f (K ).
Since {Ωi}i∈I is an arbitrary open covering of f (K ), then f (K ) is compact
as claimed.

() Differential Geometry April 26, 2019 4 / 5



Theorem 0.1.A

Theorem 0.1.A

Theorem 0.1.A. Let E and F be a Hausdorff topological spaces. If E is
compact then any continuous f : E → F is proper.

Proof. Let K ⊂ F be compact. Then by Theorem 0.9, K is closed. By
Note 0.1.A, f −1(K ) is a closed subset of E . Since E is compact, by
Theorem 0.9 f −1(K ) is compact. Therefore, by the definition of “proper,”
f is proper as claimed.
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