Differential Geometry

Chapter 2. Differential Geometry

2.1. Manifolds—Proofs of Theorems

The large scale structure of space-time

S. W. Hawking
and
G. F. R. Ellis

Table of contents

(1) Theorem 2.1.A

Theorem 2.1.A

Theorem 2.1.A. For \mathcal{M} a manifold and $\left\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\right\}$ a complete atlas, each $\varphi_{\alpha}: \mathcal{U}_{\alpha} \rightarrow \varphi_{\alpha}\left(\mathcal{U}_{\alpha}\right) \subset \mathbb{R}^{n}$ is a homeomorphism.

Proof. Recall that for X and Y topological spaces, $f: X \rightarrow Y$ a bijection is a homeomorphism if both f and $f^{-1}: Y \rightarrow X$ are continuous. Let \mathcal{O} be a set open in \mathcal{U}_{α} under the subspace topology on \mathcal{M} (see Section 16, "The Subspace Topology" of my online topology notes at http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-16.pdf).

Theorem 2.1.A

Theorem 2.1.A. For \mathcal{M} a manifold and $\left\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\right\}$ a complete atlas, each $\varphi_{\alpha}: \mathcal{U}_{\alpha} \rightarrow \varphi_{\alpha}\left(\mathcal{U}_{\alpha}\right) \subset \mathbb{R}^{n}$ is a homeomorphism.

Proof. Recall that for X and Y topological spaces, $f: X \rightarrow Y$ a bijection is a homeomorphism if both f and $f^{-1}: Y \rightarrow X$ are continuous. Let \mathcal{O} be a set open in \mathcal{U}_{α} under the subspace topology on \mathcal{M} (see Section 16, "The Subspace Topology" of my online topology notes at http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-16.pdf). Then $\mathcal{O}=\mathcal{U}_{\alpha} \cap U$ where U is an open set in the topology on \mathcal{M}. Since $\left\{\mathcal{U}_{\beta}\right\}$ is a basis for the topology on \mathcal{M} then $U=\cup_{\beta \in B} \mathcal{U}_{\beta}$ for some set of index values B. Then

$$
\mathcal{O}=\mathcal{U}_{\alpha} \cap\left(\cup_{\beta \in B} \mathcal{U}_{\beta}\right)=\cup_{\beta \in B}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right) .
$$

Theorem 2.1.A

Theorem 2.1.A. For \mathcal{M} a manifold and $\left\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\right\}$ a complete atlas, each $\varphi_{\alpha}: \mathcal{U}_{\alpha} \rightarrow \varphi_{\alpha}\left(\mathcal{U}_{\alpha}\right) \subset \mathbb{R}^{n}$ is a homeomorphism.

Proof. Recall that for X and Y topological spaces, $f: X \rightarrow Y$ a bijection is a homeomorphism if both f and $f^{-1}: Y \rightarrow X$ are continuous. Let \mathcal{O} be a set open in \mathcal{U}_{α} under the subspace topology on \mathcal{M} (see Section 16, "The Subspace Topology" of my online topology notes at http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-16.pdf). Then $\mathcal{O}=\mathcal{U}_{\alpha} \cap U$ where U is an open set in the topology on \mathcal{M}. Since $\left\{\mathcal{U}_{\beta}\right\}$ is a basis for the topology on \mathcal{M} then $U=\cup_{\beta \in B} \mathcal{U}_{\beta}$ for some set of index values B. Then

$$
\mathcal{O}=\mathcal{U}_{\alpha} \cap\left(\cup_{\beta \in B} \mathcal{U}_{\beta}\right)=\cup_{\beta \in B}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right) .
$$

For one to one function f we have $f(A \cap C)=f(A) \cap f(C)$ for any sets A and C (see J. R. Kirkwood's An Introduction to Analysis, 2nd Edition, PWS Publishing Company and Waveland Press, Inc. (1995), Exercise 1.1.14)

Theorem 2.1.A

Theorem 2.1.A. For \mathcal{M} a manifold and $\left\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\right\}$ a complete atlas, each $\varphi_{\alpha}: \mathcal{U}_{\alpha} \rightarrow \varphi_{\alpha}\left(\mathcal{U}_{\alpha}\right) \subset \mathbb{R}^{n}$ is a homeomorphism.

Proof. Recall that for X and Y topological spaces, $f: X \rightarrow Y$ a bijection is a homeomorphism if both f and $f^{-1}: Y \rightarrow X$ are continuous. Let \mathcal{O} be a set open in \mathcal{U}_{α} under the subspace topology on \mathcal{M} (see Section 16, "The Subspace Topology" of my online topology notes at http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-16.pdf). Then $\mathcal{O}=\mathcal{U}_{\alpha} \cap U$ where U is an open set in the topology on \mathcal{M}. Since $\left\{\mathcal{U}_{\beta}\right\}$ is a basis for the topology on \mathcal{M} then $U=\cup_{\beta \in B} \mathcal{U}_{\beta}$ for some set of index values B. Then

$$
\mathcal{O}=\mathcal{U}_{\alpha} \cap\left(\cup_{\beta \in B} \mathcal{U}_{\beta}\right)=\cup_{\beta \in B}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right) .
$$

For one to one function f we have $f(A \cap C)=f(A) \cap f(C)$ for any sets A and C (see J. R. Kirkwood's An Introduction to Analysis, 2nd Edition, PWS Publishing Company and Waveland Press, Inc. (1995), Exercise 1.1.14).

Theorem 2.1.A (continued 1)

Proof (continued). Also, for any function f defined on a set C we have $f\left(\cup_{\gamma \in G} C_{\gamma}\right)=\sup _{\gamma \in G} f\left(C_{\gamma}\right)$ where $C_{\gamma} \subset C$ for all $\gamma \in G$ (see Kirkwood's Exercise 1.1.13(a) and the note that follows it on page 13). So

$$
\varphi_{\alpha}(\mathcal{O})=\varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap U\right)=\varphi_{\alpha}\left(\cup_{\beta \in B}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)\right)=\cup_{\beta \in B} \varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right) .
$$

Notice that $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ is open in the subspace topology and φ_{α} restricted to $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}, \varphi_{\alpha} \mid \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$, gives a chart $\left(\varphi_{\alpha} \mid \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}, \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)$ which is compatible with the other charts on \mathcal{M} and so is included in the complete atlas.

Theorem 2.1.A (continued 1)

Proof (continued). Also, for any function f defined on a set C we have $f\left(\cup_{\gamma \in G} C_{\gamma}\right)=\sup _{\gamma \in G} f\left(C_{\gamma}\right)$ where $C_{\gamma} \subset C$ for all $\gamma \in G$ (see Kirkwood's Exercise 1.1.13(a) and the note that follows it on page 13). So

$$
\varphi_{\alpha}(\mathcal{O})=\varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap U\right)=\varphi_{\alpha}\left(\cup_{\beta \in B}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)\right)=\cup_{\beta \in B} \varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)
$$

Notice that $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ is open in the subspace topology and φ_{α} restricted to $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}, \varphi_{\alpha} \mid \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$, gives a chart $\left(\varphi_{\alpha} \mid \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}, \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)$ which is compatible with the other charts on \mathcal{M} and so is included in the complete atlas. It then follows that $\varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)$ is open in \mathbb{R}^{n}. Therefore $\cup_{\beta \in B} \varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)=\varphi(\mathcal{O})$ is open in \mathbb{R}^{n}. Now \mathcal{O} is an arbitrary open subset of \mathcal{U}_{α} and we now have that the inverse image (with respect to the function $\left.\varphi_{\alpha}^{-1}\right),\left(\varphi_{\alpha}^{-1}\right)^{-1}(\mathcal{O})=\varphi_{\alpha}(\mathcal{O})$ is open (since φ_{α} is one to one, nothing is mapped by φ_{α} to $\varphi_{\alpha}(\mathcal{O})$ other than elements of \mathcal{O}). Hence function φ_{α}^{-1} is continuous.

Theorem 2.1.A (continued 1)

Proof (continued). Also, for any function f defined on a set C we have $f\left(\cup_{\gamma \in G} C_{\gamma}\right)=\sup _{\gamma \in G} f\left(C_{\gamma}\right)$ where $C_{\gamma} \subset C$ for all $\gamma \in G$ (see Kirkwood's Exercise 1.1.13(a) and the note that follows it on page 13). So

$$
\varphi_{\alpha}(\mathcal{O})=\varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap U\right)=\varphi_{\alpha}\left(\cup_{\beta \in B}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)\right)=\cup_{\beta \in B} \varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)
$$

Notice that $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ is open in the subspace topology and φ_{α} restricted to $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}, \varphi_{\alpha} \mid \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$, gives a chart $\left(\varphi_{\alpha} \mid \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}, \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)$ which is compatible with the other charts on \mathcal{M} and so is included in the complete atlas. It then follows that $\varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)$ is open in \mathbb{R}^{n}. Therefore $\cup_{\beta \in B} \varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right)=\varphi(\mathcal{O})$ is open in \mathbb{R}^{n}. Now \mathcal{O} is an arbitrary open subset of \mathcal{U}_{α} and we now have that the inverse image (with respect to the function $\left.\varphi_{\alpha}^{-1}\right),\left(\varphi_{\alpha}^{-1}\right)^{-1}(\mathcal{O})=\varphi_{\alpha}(\mathcal{O})$ is open (since φ_{α} is one to one, nothing is mapped by φ_{α} to $\varphi_{\alpha}(\mathcal{O})$ other than elements of $\left.\mathcal{O}\right)$. Hence function φ_{α}^{-1} is continuous.

Theorem 2.1.A (continued 2)

Proof (continued).

Theorem 2.1.A (continued 3)

Proof (continued).

