Differential Geometry

Chapter 2. Differential Geometry 2.1. Manifolds—Proofs of Theorems

The large scale structure of space-time

> S. W. Hawking and G. F. R. Ellis

AMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

Table of contents

Theorem 2.1.A. For \mathcal{M} a manifold and $\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\}$ a complete atlas, each $\varphi_{\alpha} : \mathcal{U}_{\alpha} \to \varphi_{\alpha}(\mathcal{U}_{\alpha}) \subset \mathbb{R}^{n}$ is a homeomorphism.

Proof. Recall that for X and Y topological spaces, $f : X \to Y$ a bijection is a homeomorphism if both f and $f^{-1} : Y \to X$ are continuous. Let \mathcal{O} be a set open in \mathcal{U}_{α} under the subspace topology on \mathcal{M} (see Section 16, "The Subspace Topology" of my online topology notes at http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-16.pdf).

Theorem 2.1.A. For \mathcal{M} a manifold and $\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\}$ a complete atlas, each $\varphi_{\alpha} : \mathcal{U}_{\alpha} \to \varphi_{\alpha}(\mathcal{U}_{\alpha}) \subset \mathbb{R}^{n}$ is a homeomorphism.

Proof. Recall that for X and Y topological spaces, $f: X \to Y$ a bijection is a homeomorphism if both f and $f^{-1}: Y \to X$ are continuous. Let \mathcal{O} be a set open in \mathcal{U}_{α} under the subspace topology on \mathcal{M} (see Section 16, "The Subspace Topology" of my online topology notes at http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-16.pdf). Then $\mathcal{O} = \mathcal{U}_{\alpha} \cap U$ where U is an open set in the topology on \mathcal{M} . Since $\{\mathcal{U}_{\beta}\}$ is a basis for the topology on \mathcal{M} then $U = \cup_{\beta \in B} \mathcal{U}_{\beta}$ for some set of index values B. Then

$$\mathcal{O} = \mathcal{U}_{\alpha} \cap \left(\cup_{\beta \in B} \mathcal{U}_{\beta} \right) = \cup_{\beta \in B} \left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \right).$$

Theorem 2.1.A. For \mathcal{M} a manifold and $\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\}$ a complete atlas, each $\varphi_{\alpha} : \mathcal{U}_{\alpha} \to \varphi_{\alpha}(\mathcal{U}_{\alpha}) \subset \mathbb{R}^{n}$ is a homeomorphism.

Proof. Recall that for X and Y topological spaces, $f: X \to Y$ a bijection is a homeomorphism if both f and $f^{-1}: Y \to X$ are continuous. Let \mathcal{O} be a set open in \mathcal{U}_{α} under the subspace topology on \mathcal{M} (see Section 16, "The Subspace Topology" of my online topology notes at http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-16.pdf). Then $\mathcal{O} = \mathcal{U}_{\alpha} \cap U$ where U is an open set in the topology on \mathcal{M} . Since $\{\mathcal{U}_{\beta}\}$ is a basis for the topology on \mathcal{M} then $U = \cup_{\beta \in B} \mathcal{U}_{\beta}$ for some set of index values B. Then

$$\mathcal{O} = \mathcal{U}_{\alpha} \cap (\cup_{\beta \in B} \mathcal{U}_{\beta}) = \cup_{\beta \in B} (\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}).$$

For one to one function f we have $f(A \cap C) = f(A) \cap f(C)$ for any sets A and C (see J. R. Kirkwood's An Introduction to Analysis, 2nd Edition, PWS Publishing Company and Waveland Press, Inc. (1995), Exercise 1.1.14).

Differential Geometry

Theorem 2.1.A. For \mathcal{M} a manifold and $\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\}$ a complete atlas, each $\varphi_{\alpha} : \mathcal{U}_{\alpha} \to \varphi_{\alpha}(\mathcal{U}_{\alpha}) \subset \mathbb{R}^{n}$ is a homeomorphism.

Proof. Recall that for X and Y topological spaces, $f: X \to Y$ a bijection is a homeomorphism if both f and $f^{-1}: Y \to X$ are continuous. Let \mathcal{O} be a set open in \mathcal{U}_{α} under the subspace topology on \mathcal{M} (see Section 16, "The Subspace Topology" of my online topology notes at http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-16.pdf). Then $\mathcal{O} = \mathcal{U}_{\alpha} \cap U$ where U is an open set in the topology on \mathcal{M} . Since $\{\mathcal{U}_{\beta}\}$ is a basis for the topology on \mathcal{M} then $U = \bigcup_{\beta \in B} \mathcal{U}_{\beta}$ for some set of index values B. Then

$$\mathcal{O} = \mathcal{U}_{\alpha} \cap (\cup_{\beta \in B} \mathcal{U}_{\beta}) = \cup_{\beta \in B} (\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}).$$

For one to one function f we have $f(A \cap C) = f(A) \cap f(C)$ for any sets A and C (see J. R. Kirkwood's An Introduction to Analysis, 2nd Edition, PWS Publishing Company and Waveland Press, Inc. (1995), Exercise 1.1.14).

Theorem 2.1.A (continued 1)

Proof (continued). Also, for any function f defined on a set C we have $f(\bigcup_{\gamma \in G} C_{\gamma}) = \sup_{\gamma \in G} f(C_{\gamma})$ where $C_{\gamma} \subset C$ for all $\gamma \in G$ (see Kirkwood's Exercise 1.1.13(a) and the note that follows it on page 13). So

 $\varphi_{\alpha}(\mathcal{O}) = \varphi_{\alpha}(\mathcal{U}_{\alpha} \cap \mathcal{U}) = \varphi_{\alpha}\left(\cup_{\beta \in B}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta})\right) = \cup_{\beta \in B}\varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right).$

Notice that $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ is open in the subspace topology and φ_{α} restricted to $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$, $\varphi_{\alpha}|_{\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}}$, gives a chart $(\varphi_{\alpha}|_{\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}}, \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta})$ which is compatible with the other charts on \mathcal{M} and so is included in the complete atlas.

Theorem 2.1.A (continued 1)

Proof (continued). Also, for any function f defined on a set C we have $f(\bigcup_{\gamma \in G} C_{\gamma}) = \sup_{\gamma \in G} f(C_{\gamma})$ where $C_{\gamma} \subset C$ for all $\gamma \in G$ (see Kirkwood's Exercise 1.1.13(a) and the note that follows it on page 13). So

$$\varphi_{\alpha}(\mathcal{O}) = \varphi_{\alpha}(\mathcal{U}_{\alpha} \cap \mathcal{U}) = \varphi_{\alpha}\left(\cup_{\beta \in B}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta})\right) = \cup_{\beta \in B}\varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right).$$

Notice that $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ is open in the subspace topology and φ_{α} restricted to $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$, $\varphi_{\alpha}|_{\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}}$, gives a chart $(\varphi_{\alpha}|_{\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}}, \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta})$ which is compatible with the other charts on \mathcal{M} and so is included in the complete atlas. It then follows that $\varphi_{\alpha}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta})$ is open in \mathbb{R}^{n} . Therefore $\cup_{\beta \in B} \varphi_{\alpha}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}) = \varphi(\mathcal{O})$ is open in \mathbb{R}^{n} . Now \mathcal{O} is an arbitrary open subset of \mathcal{U}_{α} and we now have that the inverse image (with respect to the function φ_{α}^{-1}), $(\varphi_{\alpha}^{-1})^{-1}(\mathcal{O}) = \varphi_{\alpha}(\mathcal{O})$ is open (since φ_{α} is one to one, nothing is mapped by φ_{α} to $\varphi_{\alpha}(\mathcal{O})$ other than elements of \mathcal{O}). Hence function φ_{α}^{-1} is continuous.

Theorem 2.1.A (continued 1)

Proof (continued). Also, for any function f defined on a set C we have $f(\bigcup_{\gamma \in G} C_{\gamma}) = \sup_{\gamma \in G} f(C_{\gamma})$ where $C_{\gamma} \subset C$ for all $\gamma \in G$ (see Kirkwood's Exercise 1.1.13(a) and the note that follows it on page 13). So

$$\varphi_{\alpha}(\mathcal{O}) = \varphi_{\alpha}(\mathcal{U}_{\alpha} \cap \mathcal{U}) = \varphi_{\alpha}\left(\cup_{\beta \in B}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta})\right) = \cup_{\beta \in B}\varphi_{\alpha}\left(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}\right).$$

Notice that $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ is open in the subspace topology and φ_{α} restricted to $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$, $\varphi_{\alpha}|_{\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}}$, gives a chart $(\varphi_{\alpha}|_{\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}}, \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta})$ which is compatible with the other charts on \mathcal{M} and so is included in the complete atlas. It then follows that $\varphi_{\alpha}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta})$ is open in \mathbb{R}^{n} . Therefore $\cup_{\beta \in B} \varphi_{\alpha}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}) = \varphi(\mathcal{O})$ is open in \mathbb{R}^{n} . Now \mathcal{O} is an arbitrary open subset of \mathcal{U}_{α} and we now have that the inverse image (with respect to the function φ_{α}^{-1}), $(\varphi_{\alpha}^{-1})^{-1}(\mathcal{O}) = \varphi_{\alpha}(\mathcal{O})$ is open (since φ_{α} is one to one, nothing is mapped by φ_{α} to $\varphi_{\alpha}(\mathcal{O})$ other than elements of \mathcal{O}). Hence function φ_{α}^{-1} is continuous.

Theorem 2.1.A (continued 2)

Proof (continued).

Theorem 2.1.A (continued 3)

Proof (continued).