Differential Geometry

Chapter 2. Manifolds and Tensor Fields

2.2. Vectors—Proofs of Theorems

Differential Geometry

June 16, 2018 1

Differential Geometry

June 16, 2018

0 2/0

Theorem 2.2.

Theorem 2.2.1 (continued 1)

Proof (continued). If $f \in \mathcal{F}$ then by the definition of " C^{∞} function" we have $f \circ \psi^{-1} : U \to \mathbb{R}$ is C^{∞} . (We defined $f : M \to M'$ as C^{∞} in Section 2.1 and involved $\psi'_{\beta} : M' \to \mathbb{R}^n$, but here $M' = \mathbb{R}$ so we take ψ'_{β} as the identity and $\psi'_{\beta} \circ f \circ \psi^{-1} = f \circ \psi^{-1}$.) For $\mu = 1, 2, \ldots, n$ define $X_{\mu} : \mathcal{F} \to \mathbb{R}$ by

$$X_{\mu}(f) = \frac{\partial}{\partial x^{\mu}} \left[f \circ \psi^{-1} \right] \Big|_{\psi(p)}$$

where $(x^1, x^2, \ldots, x^{\mu})$ are the Cartesian coordinates of \mathbb{R}^n . Notice that $f \circ \psi^{-1} : U \to \mathbb{R}$ and $U \subset \mathbb{R}^n$, so in fact $f \circ \psi^{-1}$ is a function of x^1, x^2, \ldots, x^n . Then, since X_1, X_2, \ldots, X_n are defined using partial derivatives, then X_1, X_2, \ldots, X_n satisfy linearity and Leibniz's Rule and so are tangent vectors. To see that X_1, X_2, \ldots, X_n are linearly independent, consider $f_{\mu}(x) = x^{\mu}$ for $\mu = 1, 2, \ldots, n$.

Theorem 2.2.1

Theorem 2.2.1. Let M be an n-dimensional manifold. Let $p \in M$ and let V_p denote the tangent space at p. Then $\dim(V_p) = n$.

Proof. We will construct a basis for V_p . Let $\psi: O \to U \subset \mathbb{R}^n$ be a chart with $p \in O$.

Figure 2.3 from Wald, page 15

Theorem 2.2.1 (continued 2)

Proof (continued). Then

$$X_i(f_i) = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$$

and so $(a_1X_1 + a_2X_2 + \cdots + a_nX_n)(f_i) = 0$ if and only if $a_i = 0$. So by applying $a_1X_1 + a_2X_2 + \cdots + a_nX_n$ to f_1, f_2, \ldots, f_n and setting each equal to 0 implies that $a_1 = a_2 = \cdots = a_n = 0$. So X_1, X_2, \ldots, X_n are linearly independent.

By Problem 2.2, if $F: \mathbb{R}^n \to \mathbb{R}$ is C^{∞} , then for each $a = (a^1, a^2, \dots, a^n) \in \mathbb{R}^n$, there exists C^{∞} functions H_{μ} such that for all $x \in \mathbb{R}^n$ we have

$$F(x) = F(a) + \sum_{\mu=1}^{n} (x^{\mu} - a^{\mu}) H_{\mu}(x) \text{ and } H_{\mu}(a) = \frac{\partial F}{\partial x^{\mu}} \Big|_{x=a}.$$
 (2.2.3/2.2.4)

Differential Geometry June 16, 2018 4 / 9

Differential Geometry

June 16, 2018 5 /

Theorem 2.2.1

Theorem 2.2.1 (continued 3)

Proof (continued). We take $F = f \circ \psi^{-1} : \mathbb{R}^n \to \mathbb{R}$ and $a = \psi(p)$ to get from Problem 2.2 that for all $q \in O$ (where $\psi(q) = x \in \mathbb{R}^n$; think of both x and q as variables)

$$F(x) = (f \circ \psi^{-1})(\psi(q)) = f(q)$$

$$= F(\psi(p)) + \sum_{\mu=1}^{n} [x^{\mu} \circ \psi(q) - x^{\mu} \circ \psi(p)] H_{\mu}(\psi(q))$$

where $x^{\mu} \circ \psi(q)$ denotes the μ -th coordinate of $\psi(q) \in \mathbb{R}^n$. Also, $F(\psi(p)) = (f \circ \psi^{-1})(\psi(p)) = f(p)$, so

$$f(q) = f(p) + \sum_{\mu=1}^{n} (x^{\mu} \circ \psi(q) - x^{\mu} \circ \psi(p)) H_{\mu}(\psi(q)). \tag{2.2.4}$$

Let $v \in V_p$. We now show that v is a linear combination of X_1, X_2, \ldots, X_n (and hence X_1, X_2, \ldots, X_n is a basis for V_p).

Theorem 2.2.1 (continued 5)

Proof (continued).

$$V(f) = 0 + \sum_{\mu=1}^{n} \{0 + v[x^{\mu} \circ \psi(q) - x^{\mu} \circ \psi(p)]H_{\mu}(\psi(p))\}$$
since $f(p)$ is constant
$$= \sum_{\mu=1}^{n} v[(x^{\mu} \circ \psi)(q)](H_{\mu} \circ \psi)(p) \text{ since } (x^{\mu} \circ \psi)(p) \text{ is constant.}$$

But by equation (2.2.3),

$$H_{\mu} \circ \psi(p) = H_{\mu}(a) = \left. \frac{\partial F}{\partial x^{\mu}} \right|_{x=a} = \left. X_{\mu}(f) \right|_{x=a}.$$

So

$$v(f) = \sum_{\mu=1}^{n} v((x^{\mu} \circ \psi)(q)) |X_{\mu}(f)|_{x=a}.$$

Theorem 2.2.1 (continued 4)

Proof (continued). Let $f \in \mathcal{F}$. We have

$$\begin{aligned} v(f) &= v(f(q))|_{q=p} \\ &= v \left[f(p) + \sum_{\mu=1}^{n} [x^{\mu} \circ \psi(q) - x^{\mu} \circ \psi(p)] H_{\mu}(\psi(q)) \right] \text{ by } (2.2.4) \\ &= v[f(p)] + \sum_{\mu=1}^{n} v \left[[x^{\mu} \circ \psi(q) - x^{\mu} \circ \psi(p)] H_{\mu}(\psi(q)) \right] \\ &= \text{ since } v \text{ is linear} \\ &= v[f(p)] + \sum_{\mu=1}^{n} \left\{ \left(x^{\mu} \circ \psi(q) - x^{\mu} \circ \psi(p) \right) |_{q=p} v[H_{\mu}(\psi(q))] \right. \\ &+ v[x^{\mu} \circ \psi(q) - x^{\mu} \circ \psi(p)] H_{\mu}(\psi(q)) |_{q=p} \right\} \text{ by Leibniz's Rule} \end{aligned}$$

Differential Geometry

Theorem 2.2.1 (continued 6)

Theorem 2.2.1. Let M be an n-dimensional manifold. Let $p \in M$ and let V_p denote the tangent space at p. Then $\dim(V_p) = n$.

Proof (continued). With v^{μ} set equal to $v((x^{\mu} \circ \psi)(q))$ we have

$$v(f) = \left(\sum_{\mu=1}^n v^\mu X_\mu
ight)(f)$$

and so $v\sum_{\mu=1}^n v^\mu X_\mu$ and X_1, X_2, \ldots, X_n is a spanning set for V_p . Therefore, X_1, X_2, \ldots, X_n is a basis for V_p .

Differential Geometry June 16, 2018 8 / 9 () Differential Geometry June 16, 2018 9