Differential Geometry

Chapter 2. Manifolds and Tensor Fields
2.2. Vectors—Proofs of Theorems

Table of contents

(1) Theorem 2.2.1

Theorem 2.2.1

Theorem 2.2.1. Let M be an n-dimensional manifold. Let $p \in M$ and let V_{p} denote the tangent space at p. Then $\operatorname{dim}\left(V_{p}\right)=n$.

Proof. We will construct a basis for V_{p}. Let $\psi: O \rightarrow U \subset \mathbb{R}^{n}$ be a chart with $p \in O$.

Theorem 2.2.1

Theorem 2.2.1. Let M be an n-dimensional manifold. Let $p \in M$ and let V_{p} denote the tangent space at p. Then $\operatorname{dim}\left(V_{p}\right)=n$.

Proof. We will construct a basis for V_{p}. Let $\psi: O \rightarrow U \subset \mathbb{R}^{n}$ be a chart with $p \in O$.

Figure 2.3 from Wald, page 15

Theorem 2.2.1

Theorem 2.2.1. Let M be an n-dimensional manifold. Let $p \in M$ and let V_{p} denote the tangent space at p. Then $\operatorname{dim}\left(V_{p}\right)=n$.

Proof. We will construct a basis for V_{p}. Let $\psi: O \rightarrow U \subset \mathbb{R}^{n}$ be a chart with $p \in O$.

Figure 2.3 from Wald, page 15

Theorem 2.2.1 (continued 1)

Proof (continued). If $f \in \mathcal{F}$ then by the definition of " C^{∞} function" we have $f \circ \psi^{-1}: U \rightarrow \mathbb{R}$ is C^{∞}. (We defined $f: M \rightarrow M^{\prime}$ as C^{∞} in Section 2.1 and involved $\psi_{\beta}^{\prime}: M^{\prime} \rightarrow \mathbb{R}^{n}$, but here $M^{\prime}=\mathbb{R}$ so we take ψ_{β}^{\prime} as the identity and $\psi_{\beta}^{\prime} \circ f \circ \psi^{-1}=f \circ \psi^{-1}$.) For $\mu=1,2, \ldots, n$ define $X_{\mu}: \mathcal{F} \rightarrow \mathbb{R}$ by

$$
X_{\mu}(f)=\left.\frac{\partial}{\partial x^{\mu}}\left[f \circ \psi^{-1}\right]\right|_{\psi(p)}
$$

where $\left(x^{1}, x^{2}, \ldots, x^{\mu}\right)$ are the Cartesian coordinates of \mathbb{R}^{n}. Notice that $f \circ \psi^{-1}: U \rightarrow \mathbb{R}$ and $U \subset \mathbb{R}^{n}$, so in fact $f \circ \psi^{-1}$ is a function of $x^{1}, x^{2}, \ldots, x^{n}$

Theorem 2.2.1 (continued 1)

Proof (continued). If $f \in \mathcal{F}$ then by the definition of " C^{∞} function" we have $f \circ \psi^{-1}: U \rightarrow \mathbb{R}$ is C^{∞}. (We defined $f: M \rightarrow M^{\prime}$ as C^{∞} in Section 2.1 and involved $\psi_{\beta}^{\prime}: M^{\prime} \rightarrow \mathbb{R}^{n}$, but here $M^{\prime}=\mathbb{R}$ so we take ψ_{β}^{\prime} as the identity and $\psi_{\beta}^{\prime} \circ f \circ \psi^{-1}=f \circ \psi^{-1}$.) For $\mu=1,2, \ldots, n$ define $X_{\mu}: \mathcal{F} \rightarrow \mathbb{R}$ by

$$
X_{\mu}(f)=\left.\frac{\partial}{\partial x^{\mu}}\left[f \circ \psi^{-1}\right]\right|_{\psi(p)}
$$

where $\left(x^{1}, x^{2}, \ldots, x^{\mu}\right)$ are the Cartesian coordinates of \mathbb{R}^{n}. Notice that $f \circ \psi^{-1}: U \rightarrow \mathbb{R}$ and $U \subset \mathbb{R}^{n}$, so in fact $f \circ \psi^{-1}$ is a function of $x^{1}, x^{2}, \ldots, x^{n}$. Then, since $X_{1}, X_{2}, \ldots, X_{n}$ are defined using partial derivatives, then $X_{1}, X_{2}, \ldots, X_{n}$ satisfy linearity and Leibniz's Rule and so are tangent vectors. To see that $X_{1}, X_{2}, \ldots, X_{n}$ are linearly independent, consider $f_{\mu}(x)=x^{\mu}$ for $\mu=1,2, \ldots, n$.

Theorem 2.2.1 (continued 1)

Proof (continued). If $f \in \mathcal{F}$ then by the definition of " C^{∞} function" we have $f \circ \psi^{-1}: U \rightarrow \mathbb{R}$ is C^{∞}. (We defined $f: M \rightarrow M^{\prime}$ as C^{∞} in Section 2.1 and involved $\psi_{\beta}^{\prime}: M^{\prime} \rightarrow \mathbb{R}^{n}$, but here $M^{\prime}=\mathbb{R}$ so we take ψ_{β}^{\prime} as the identity and $\psi_{\beta}^{\prime} \circ f \circ \psi^{-1}=f \circ \psi^{-1}$.) For $\mu=1,2, \ldots, n$ define $X_{\mu}: \mathcal{F} \rightarrow \mathbb{R}$ by

$$
X_{\mu}(f)=\left.\frac{\partial}{\partial x^{\mu}}\left[f \circ \psi^{-1}\right]\right|_{\psi(p)}
$$

where $\left(x^{1}, x^{2}, \ldots, x^{\mu}\right)$ are the Cartesian coordinates of \mathbb{R}^{n}. Notice that $f \circ \psi^{-1}: U \rightarrow \mathbb{R}$ and $U \subset \mathbb{R}^{n}$, so in fact $f \circ \psi^{-1}$ is a function of $x^{1}, x^{2}, \ldots, x^{n}$. Then, since $X_{1}, X_{2}, \ldots, X_{n}$ are defined using partial derivatives, then $X_{1}, X_{2}, \ldots, X_{n}$ satisfy linearity and Leibniz's Rule and so are tangent vectors. To see that $X_{1}, X_{2}, \ldots, X_{n}$ are linearly independent, consider $f_{\mu}(x)=x^{\mu}$ for $\mu=1,2, \ldots, n$.

Theorem 2.2.1 (continued 2)

Proof (continued). Then

$$
X_{i}\left(f_{i}\right)=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array}\right.
$$

and so $\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right)\left(f_{i}\right)=0$ if and only if $a_{i}=0$. So by
applying $a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}$ to $f_{1}, f_{2}, \ldots, f_{n}$ and setting each equal to 0 implies that $a_{1}=a_{2}=\cdots=a_{n}=0$. So $X_{1}, X_{2}, \ldots, X_{n}$ are linearly independent.

By Problem 2.2, if $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{∞}, then for each
$a=\left(a^{1}, a^{2}, \ldots, a^{n}\right) \in \mathbb{R}^{n}$, there exists C^{∞} functions H_{μ} such that for all $x \in \mathbb{R}^{n}$ we have

$$
F(x)=F(a)+\sum_{\mu=1}^{n}\left(x^{\mu}-a^{\mu}\right) H_{\mu}(x) \text { and } H_{\mu}(a)=\left.\frac{\partial F}{\partial x^{\mu}}\right|_{x=a} \quad \quad \quad(2.2 .3 / 2.2 .4)
$$

Theorem 2.2.1 (continued 2)

Proof (continued). Then

$$
X_{i}\left(f_{i}\right)=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array}\right.
$$

and so $\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right)\left(f_{i}\right)=0$ if and only if $a_{i}=0$. So by
applying $a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}$ to $f_{1}, f_{2}, \ldots, f_{n}$ and setting each equal to 0 implies that $a_{1}=a_{2}=\cdots=a_{n}=0$. So $X_{1}, X_{2}, \ldots, X_{n}$ are linearly independent.

By Problem 2.2, if $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{∞}, then for each $a=\left(a^{1}, a^{2}, \ldots, a^{n}\right) \in \mathbb{R}^{n}$, there exists C^{∞} functions H_{μ} such that for all $x \in \mathbb{R}^{n}$ we have

$$
\begin{equation*}
F(x)=F(a)+\sum_{\mu=1}^{n}\left(x^{\mu}-a^{\mu}\right) H_{\mu}(x) \text { and } H_{\mu}(a)=\left.\frac{\partial F}{\partial x^{\mu}}\right|_{x=a} . \tag{2.2.3/2.2.4}
\end{equation*}
$$

Theorem 2.2.1 (continued 3)

Proof (continued). We take $F=f \circ \psi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $a=\psi(p)$ to get from Problem 2.2 that for all $q \in O$ (where $\psi(q)=x \in \mathbb{R}^{n}$; think of both x and q as variables)

$$
\begin{gathered}
F(x)=\left(f \circ \psi^{-1}\right)(\psi(q))=f(q) \\
=F(\psi(p))+\sum_{\mu=1}^{n}\left[x^{\mu} \circ \psi(q)-x^{\mu} \circ \psi(p)\right] H_{\mu}(\psi(q))
\end{gathered}
$$

where $x^{\mu} \circ \psi(q)$ denotes the μ-th coordinate of $\psi(q) \in \mathbb{R}^{n}$. Also, $F(\psi(p))=\left(f \circ \psi^{-1}\right)(\psi(p))=f(p)$, so

$$
\begin{equation*}
f(q)=f(p)+\sum_{\mu=1}^{n}\left(x^{\mu} \circ \psi(q)-x^{\mu} \circ \psi(p)\right) H_{\mu}(\psi(q)) . \tag{2.2.4}
\end{equation*}
$$

Let $v \in V_{p}$. We now show that v is a linear combination of $X_{1}, X_{2}, \ldots, X_{n}$ (and hence $X_{1}, X_{2}, \ldots, X_{n}$ is a basis for V_{p}).

Theorem 2.2.1 (continued 3)

Proof (continued). We take $F=f \circ \psi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $a=\psi(p)$ to get from Problem 2.2 that for all $q \in O$ (where $\psi(q)=x \in \mathbb{R}^{n}$; think of both x and q as variables)

$$
\begin{gathered}
F(x)=\left(f \circ \psi^{-1}\right)(\psi(q))=f(q) \\
=F(\psi(p))+\sum_{\mu=1}^{n}\left[x^{\mu} \circ \psi(q)-x^{\mu} \circ \psi(p)\right] H_{\mu}(\psi(q))
\end{gathered}
$$

where $x^{\mu} \circ \psi(q)$ denotes the μ-th coordinate of $\psi(q) \in \mathbb{R}^{n}$. Also, $F(\psi(p))=\left(f \circ \psi^{-1}\right)(\psi(p))=f(p)$, so

$$
\begin{equation*}
f(q)=f(p)+\sum_{\mu=1}^{n}\left(x^{\mu} \circ \psi(q)-x^{\mu} \circ \psi(p)\right) H_{\mu}(\psi(q)) \tag{2.2.4}
\end{equation*}
$$

Let $v \in V_{p}$. We now show that v is a linear combination of $X_{1}, X_{2}, \ldots, X_{n}$ (and hence $X_{1}, X_{2}, \ldots, X_{n}$ is a basis for V_{p}).

Theorem 2.2.1 (continued 4)

Proof (continued). Let $f \in \mathcal{F}$. We have

$$
\begin{aligned}
v(f)= & \left.v(f(q))\right|_{q=p} \\
= & v\left[f(p)+\sum_{\mu=1}^{n}\left[x^{\mu} \circ \psi(q)-x^{\mu} \circ \psi(p)\right] H_{\mu}(\psi(q))\right] \text { by (2.2.4) } \\
= & v[f(p)]+\sum_{\mu=1}^{n} v\left[\left[x^{\mu} \circ \psi(q)-x^{\mu} \circ \psi(p)\right] H_{\mu}(\psi(q))\right] \\
& \text { since } v \text { is linear } \\
= & v[f(p)]+\sum_{\mu=1}^{n}\left\{\left.\left(x^{\mu} \circ \psi(q)-x^{\mu} \circ \psi(p)\right)\right|_{q=p} v\left[H_{\mu}(\psi(q))\right]\right. \\
& \left.+\left.v\left[x^{\mu} \circ \psi(q)-x^{\mu} \circ \psi(p)\right] H_{\mu}(\psi(q))\right|_{q=p}\right\} \text { by Leibniz's Rule }
\end{aligned}
$$

Theorem 2.2.1 (continued 5)

Proof (continued).

$$
V(f)=0+\sum_{\mu=1}^{n}\left\{0+v\left[x^{\mu} \circ \psi(q)-x^{\mu} \circ \psi(p)\right] H_{\mu}(\psi(p))\right\}
$$

since $f(p)$ is constant
$=\sum_{\mu=1}^{n} v\left[\left(x^{\mu} \circ \psi\right)(q)\right]\left(H_{\mu} \circ \psi\right)(p)$ since $\left(x^{\mu} \circ \psi\right)(p)$ is constant.
But by equation (2.2.3),

$$
H_{\mu} \circ \psi(p)=H_{\mu}(a)=\left.\frac{\partial F}{\partial x^{\mu}}\right|_{x=a}=\left.X_{\mu}(f)\right|_{x=a} .
$$

So

$$
v(f)=\left.\sum_{\mu=1}^{n} v\left(\left(x^{\mu} \circ \psi\right)(q)\right) X_{\mu}(f)\right|_{x=a} .
$$

Theorem 2.2.1 (continued 5)

Proof (continued).

$$
V(f)=0+\sum_{\mu=1}^{n}\left\{0+v\left[x^{\mu} \circ \psi(q)-x^{\mu} \circ \psi(p)\right] H_{\mu}(\psi(p))\right\}
$$

since $f(p)$ is constant

$$
=\sum_{\mu=1}^{n} v\left[\left(x^{\mu} \circ \psi\right)(q)\right]\left(H_{\mu} \circ \psi\right)(p) \text { since }\left(x^{\mu} \circ \psi\right)(p) \text { is constant. }
$$

But by equation (2.2.3),

$$
H_{\mu} \circ \psi(p)=H_{\mu}(a)=\left.\frac{\partial F}{\partial x^{\mu}}\right|_{x=a}=\left.X_{\mu}(f)\right|_{x=a}
$$

So

$$
v(f)=\left.\sum_{\mu=1}^{n} v\left(\left(x^{\mu} \circ \psi\right)(q)\right) X_{\mu}(f)\right|_{x=a} .
$$

Theorem 2.2.1 (continued 6)

Theorem 2.2.1. Let M be an n-dimensional manifold. Let $p \in M$ and let V_{p} denote the tangent space at p. Then $\operatorname{dim}\left(V_{p}\right)=n$.

Proof (continued). With v^{μ} set equal to $v\left(\left(x^{\mu} \circ \psi\right)(q)\right)$ we have

$$
v(f)=\left(\sum_{\mu=1}^{n} v^{\mu} X_{\mu}\right)(f)
$$

and so $v \sum_{\mu=1}^{n} v^{\mu} X_{\mu}$ and $X_{1}, X_{2}, \ldots, X_{n}$ is a spanning set for V_{p}. Therefore, $X_{1}, X_{2}, \ldots, X_{n}$ is a basis for V_{p}.

