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Chapter 2. Manifolds and Tensor Fields
2.2. Vectors—Proofs of Theorems
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Theorem 2.2.1

Theorem 2.2.1

Theorem 2.2.1. Let M be an n-dimensional manifold. Let p ∈ M and let
Vp denote the tangent space at p. Then dim(Vp) = n.

Proof. We will construct a basis for Vp. Let ψ : O → U ⊂ Rn be a chart
with p ∈ O.

Figure 2.3 from Wald, page 15
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Theorem 2.2.1

Theorem 2.2.1 (continued 1)

Proof (continued). If f ∈ F then by the definition of “C∞ function” we
have f ◦ ψ−1 : U → R is C∞. (We defined f : M → M ′ as C∞ in Section
2.1 and involved ψ′β : M ′ → Rn, but here M ′ = R so we take ψ′β as the

identity and ψ′β ◦ f ◦ ψ−1 = f ◦ ψ−1.) For µ = 1, 2, . . . , n define
Xµ : F → R by

Xµ(f ) =
∂

∂xµ
[
f ◦ ψ−1

]∣∣∣∣
ψ(p)

where (x1, x2, . . . , xµ) are the Cartesian coordinates of Rn. Notice that
f ◦ ψ−1 : U → R and U ⊂ Rn, so in fact f ◦ ψ−1 is a function of
x1, x2, . . . , xn.

Then, since X1,X2, . . . ,Xn are defined using partial
derivatives, then X1, X2, . . . ,Xn satisfy linearity and Leibniz’s Rule and so
are tangent vectors. To see that X1,X2, . . . ,Xn are linearly independent,
consider fµ(x) = xµ for µ = 1, 2, . . . , n.
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Theorem 2.2.1

Theorem 2.2.1 (continued 2)

Proof (continued). Then

Xi (fi ) =

{
1 if i = j
0 if i 6= j

and so (a1X1 + a2X2 + · · ·+ anXn)(fi ) = 0 if and only if ai = 0. So by
applying a1X1 + a2X2 + · · ·+ anXn to f1, f2, . . . , fn and setting each equal
to 0 implies that a1 = a2 = · · · = an = 0. So X1,X2, . . . ,Xn are linearly
independent.

By Problem 2.2, if F : Rn → R is C∞, then for each
a = (a1, a2, . . . , an) ∈ Rn, there exists C∞ functions Hµ such that for all
x ∈ Rn we have

F (x) = F (a)+
n∑

µ=1

(xµ−aµ)Hµ(x) and Hµ(a) =
∂F

∂xµ

∣∣∣∣
x=a

. (2.2.3/2.2.4)
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Theorem 2.2.1

Theorem 2.2.1 (continued 3)

Proof (continued). We take F = f ◦ ψ−1 : Rn → R and a = ψ(p) to get
from Problem 2.2 that for all q ∈ O (where ψ(q) = x ∈ Rn; think of both
x and q as variables)

F (x) = (f ◦ ψ−1)(ψ(q)) = f (q)

= F (ψ(p)) +
n∑

µ=1

[xµ ◦ ψ(q)− xµ ◦ ψ(p)]Hµ(ψ(q))

where xµ ◦ ψ(q) denotes the µ-th coordinate of ψ(q) ∈ Rn. Also,
F (ψ(p)) = (f ◦ ψ−1)(ψ(p)) = f (p), so

f (q) = f (p) +
n∑

µ=1

(xµ ◦ ψ(q)− xµ ◦ ψ(p))Hµ(ψ(q)). (2.2.4)

Let v ∈ Vp. We now show that v is a linear combination of X1,X2, . . . ,Xn

(and hence X1,X2, . . . ,Xn is a basis for Vp).
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Theorem 2.2.1

Theorem 2.2.1 (continued 4)

Proof (continued). Let f ∈ F . We have

v(f ) = v(f (q))|q=p

= v

f (p) +
n∑

µ=1

[xµ ◦ ψ(q)− xµ ◦ ψ(p)]Hµ(ψ(q))

 by (2.2.4)

= v [f (p)] +
n∑

µ=1

v [[xµ ◦ ψ(q)− xµ ◦ ψ(p)]Hµ(ψ(q))]

since v is linear

= v [f (p)] +
n∑

µ=1

{
(xµ ◦ ψ(q)− xµ ◦ ψ(p))|q=p v [Hµ(ψ(q))]

+ v [xµ ◦ ψ(q)− xµ ◦ ψ(p)]Hµ(ψ(q))|q=p

}
by Leibniz’s Rule
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Theorem 2.2.1

Theorem 2.2.1 (continued 5)

Proof (continued).

V (f ) = 0 +
n∑

µ=1

{0 + v [xµ ◦ ψ(q)− xµ ◦ ψ(p)]Hµ(ψ(p))}

since f (p) is constant

=
n∑

µ=1

v [(xµ ◦ ψ)(q)](Hµ ◦ ψ)(p) since (xµ ◦ ψ)(p) is constant.

But by equation (2.2.3),

Hµ ◦ ψ(p) = Hµ(a) =
∂F

∂xµ

∣∣∣∣
x=a

= Xµ(f )|x=a .

So

v(f ) =
n∑

µ=1

v((xµ ◦ ψ)(q)) Xµ(f )|x=a .
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Proof (continued).
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Theorem 2.2.1

Theorem 2.2.1 (continued 6)

Theorem 2.2.1. Let M be an n-dimensional manifold. Let p ∈ M and let
Vp denote the tangent space at p. Then dim(Vp) = n.

Proof (continued). With vµ set equal to v((xµ ◦ ψ)(q)) we have

v(f ) =

 n∑
µ=1

vµXµ

 (f )

and so v
∑n

µ=1 vµXµ and X1,X2, . . . ,Xn is a spanning set for Vp.
Therefore, X1,X2, . . . ,Xn is a basis for Vp.
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