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Chapter 2. Differential Geometry

2.1. Manifolds (Partial)

Note. Hawking and Ellis describe a manifold as:

“A manifold is essentially a space which is locally similar to Euclidean

space in that it can be covered by coordinate patches.” [page 11]

We will discuss different “coordinate systems” on manifolds (such as Cartesian

coordinates and polar coordinates, both of which are defined on R
2), but the prop-

erties of manifolds which we study will be independent of the choice of a coordinate

system.

Note. We let R
n denote the Euclidean space of n-dimensions and give it the usual

topology; that is, the topology induced by the Euclidean metric d where

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = ((x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2)1/2.

Notice that we use superscripts to indicate coordinates of points instead of sub-

scripts.

Definition. Let O ⊂ R
n and O′ ⊂ R

m be open sets. A map ϕ : O → O′ is in the

class Cr if for each point p = (x1, x2, . . . , xn) ∈ O, the coordinates of ϕ(p) ∈ O′,

say ϕ(p) = (x1′, x2′, . . . , cm′), are r-times continuously differentiable functions of

x1, x2, . . . , xn. If such a function is Cr for all r ≥ 0 then the function is in the class

C∞. A continuous function mapping O to O′ is in the class C0.



2.1. Manifolds 2

Example. Let O = R
2 and O′ = R

3 and define ϕ : R
2 → R

3 as

ϕ(p) = ϕ((x1, x2)) = ((x1)2x2, sin x2, x1e(x2)).

Then the coordinates of ϕ(p) are x1′ = (x1)2x2, x2′ = sin x2, and x3′ = x1e(x2).

Since x1′, x2′, and x3′ are differentiable functions of x1 and x2 (of all orders), then

ϕ ∈ C∞.

Note. Hawking and Ellis do not distinguish between points in R
n and vectors

in R
n so they appear to be adding points together in places (when in fact, they

are dealing with vector sums). So for “point” p ∈ (x1, x2, . . . , xn) ∈ R
n they have

|p| =
√

(x1)2 + (x2)2 + · · · + (xn)2. We’ll follow this notation in these notes, though

we would normally think of p as a vector in R
n and we would call the quantity |p|

the norm of p (normally denoted ‖p‖).

Note. In what follows, the word “function” is used to mean a mapping of some

subset of R
n into R. A “map” is a mapping of some subset of R

n into R
m.

Definition. Let O ⊂ R
n be open. Function f : O → R is locally Lipschitz on O if

for each open set U ⊂ O with compact closure in O there is constant K ∈ R such

that for any p, q ∈ U we have |f(p) − f(q)| ≤ K|p − q|.

Note. A locally Lipschitz function on O ⊂ R
n is continuous on O. This follows

from the epsilon/delta definition of continuity (just let δ = ε/K).
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Definition. Let O ⊂ R
n be open. A map ϕ : O → R

m is locally Lipschitz, denoted

by C1−, if for each point p = (x1, x2, . . . , xn) ∈ O, the coordinates of ϕ(p) ∈ R
m, say

ϕ(p) = (x1′, x2′, . . . , xm′) are locally Lipschitz functions of x1, x2, . . . , xn. Similarly,

define a map as Cr− if it is Cr−1 and if the (r − 1)th derivatives of the coordinates

of ϕ(p) are locally Lipschitz functions of the coordinates of p.

Note. For more details on Lipschitz functions mapping subsets of R into R, see

my online notes for Complex Analysis 1 (MATH 5510), “A Primer on Lipschitz

Functions” at: http://faculty.etsu.edu/gardnerr/5510/CSPACE.pdf.

Note. We now formally define a “manifold” and give some examples.

Definition. A Cr n-dimensional manifold M is a set M together with a Cr atlas

{Uα, ϕα} of charts (Uα, ϕα) where Uα are subset of M and ϕα are one to one maps

of the corresponding Uα to open sets in R
n such that:

(1) the Uα cover M; that is, M = ∪αUα,

(2) if Uα ∩ Uβ is nonempty then the map

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ)

is a Cr map of an open subset of R
n to an open subset of R

n.



2.1. Manifolds 4

Note. The mappings of part (2) of the definition of manifold are illustrated in

Hawking and Ellis’ Figure 4 of page 12:

Definition. A Cr atlas on manifold M is compatible with a given Cr atlas on M

if their union is a Cr atlas on M. The atlas consisting of all atlases compatible

with a given atlas is the complete atlas for the given atlas.

Note. Hawking and Ellis say that a complete atlas is the set of all possible coordi-

nate systems covering manifold M. Wald in his General Relativity addresses this

by requiring the collection of charts (Uα, ϕα) to be maximal; by convention, Wald

includes this in his definition of manifold (see has page 12).
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Note. A basis for a topology on a set X is a collection B of subsets of X such

that:

(1) for each x ∈ X there is at least one basis element B ∈ B such that x ∈ B, and

(2) if x ∈ B1 ∩ B2 where B1, B2 ∈ B then there is B3 ∈ B such that x ∈ B3 and

B3 ⊂ B1 ∩ B2.

The topology T generated by B is defined as: A subset U ⊂ X is in T if for

each x ∈ U there is B ∈ B such that x ∈ B and B ⊂ U . See my notes

from Munkres’ Topology, 2nd Edition, for “Basis for a Topology” available online:

http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-13.pdf. Lemma 13.1

of these online notes states: “Let X be a set and let B be a basis for a topology T

on X . Then T equals the collection of all unions of elements of B.” Notice that for

a complete atlas {Uα, ϕα}, the sets Uα satisfy the definition of a basis for a topology

on M. So we put a topology on M generated by {Uα}. So the open sets in the

topology are, by Lemma 13.1 mentioned above, unions of elements of {Uα}. Notice

that each ϕα : Uα → R
n is, by definition, one to one and maps Uα to an open set

ϕα(Uα) ⊂ R
n.

Theorem 2.1.A. For M a manifold and {Uα, ϕα} a complete atlas, each ϕα :

Uα → ϕα(Uα) ⊂ R
n is a homeomorphism.

Definition. With R = {(x1, x2, . . . , xn) | −∞ < xi < ∞for i = 1, 2, . . . , n}, we

define the lower half of R
n as

1

2
R

n = {(x1, x2, . . . , xn) | x1 ≤ 0,−∞ < xi < ∞ for i = 2, 3, . . . , n}.
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Note. With n = 2, 1
2R

2 is the closed left half-plane. This is a subset of R
2 and

gets the subspace topology so that the open sets in 1
2
R

2 are of the form O ∩ 1
2
R

2

where O is open in R
2. So we may have open sets in 1

2
R

2 for example, of the form

U = {(x2, x2) ∈ 1
2
R

2 | |(x1, x2)| < 1}:

So 1
2
R

2 has the boundary {(x1, x2) | x1 = 0,−∞ < x2 < ∞}, and in general 1
2
R

n

has the boundary

{(x1, x2, . . . , xn) | x1 = 0,−∞ < xi < ∞ for i = 2, 3, . . . , n}.

We now define a manifold with a boundary using 1
2
R

n, similar to our definition of

manifold above.

Definition. A Cr n-dimensional manifold M with a boundary is a set M together

with a Cr atlas {Uα, ϕα} of charts (Uα, ϕα) where Uα are subset of M and ϕα are

one to one maps of the corresponding Uα to open sets in 1
2R

n such that:

(1) the Uα cover M; that is, M = ∪αUα,

(2) if Uα ∩ Uβ is nonempty then the map

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ)
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is a Cr map of an open subset of 1
2R

n to an open subset of 1
2R

n.

The boundary of M, denoted ∂(M), is the set of all points of M whose image

under a map ϕα lies on the boundary of 1
2R

n in R
n; that is,

∂(M) = {m ∈ M | ϕ(α(m) = (0, x2, x3, . . . , xn) for some ϕα

and for some (0, x2, x3, . . . , nn) ∈ R
n}.

Lemma 2.1.A. 1
2
R

n is homeomorphic to R
n−1.

Theorem 2.1.B. For M an n-dimensional Cr manifold with a boundary, ∂(M)

is an (n − 1)=dimensional Cr manifold without a boundary.
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