Chapter 2. Differential Geometry

2.1. Manifolds (Partial)

Note. Hawking and Ellis describe a manifold as:

"A manifold is essentially a space which is locally similar to Euclidean space in that it can be covered by coordinate patches." [page 11]

We will discuss different "coordinate systems" on manifolds (such as Cartesian coordinates and polar coordinates, both of which are defined on \mathbb{R}^2), but the properties of manifolds which we study will be independent of the choice of a coordinate system.

Note. We let \mathbb{R}^n denote the Euclidean space of *n*-dimensions and give it the usual topology; that is, the topology induced by the Euclidean metric d where

$$d((x^1, x^2, \dots, x^n), (y^1, y^2, \dots, y^n)) = ((x^1 - y^1)^2 + (x^2 - y^2)^2 + \dots + (x^n - y^n)^2)^{1/2}.$$

Notice that we use superscripts to indicate coordinates of points instead of subscripts.

Definition. Let $\mathcal{O} \subset \mathbb{R}^n$ and $\mathcal{O}' \subset \mathbb{R}^m$ be open sets. A map $\varphi : \mathcal{O} \to \mathcal{O}'$ is in the class C^r if for each point $p = (x^1, x^2, \dots, x^n) \in \mathcal{O}$, the coordinates of $\varphi(p) \in \mathcal{O}'$, say $\varphi(p) = (x^{1\prime}, x^{2\prime}, \dots, c^{m\prime})$, are r-times continuously differentiable functions of x^1, x^2, \dots, x^n . If such a function is C^r for all $r \geq 0$ then the function is in the class C^{∞} . A continuous function mapping \mathcal{O} to \mathcal{O}' is in the class C^0 .

Example. Let $\mathcal{O} = \mathbb{R}^2$ and $\mathcal{O}' = \mathbb{R}^3$ and define $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ as

$$\varphi(p) = \varphi((x^1, x^2)) = ((x^1)^2 x^2, \sin x^2, x^1 e^{(x^2)}).$$

Then the coordinates of $\varphi(p)$ are $x^{1\prime}=(x^1)^2x^2$, $x^{2\prime}=\sin x^2$, and $x^{3\prime}=x^1e^{(x^2)}$. Since $x^{1\prime}$, $x^{2\prime}$, and $x^{3\prime}$ are differentiable functions of x^1 and x^2 (of all orders), then $\varphi\in C^\infty$.

Note. Hawking and Ellis do not distinguish between points in \mathbb{R}^n and vectors in \mathbb{R}^n so they appear to be adding points together in places (when in fact, they are dealing with vector sums). So for "point" $p \in (x^1, x^2, \dots, x^n) \in \mathbb{R}^n$ they have $|p| = \sqrt{(x^1)^2 + (x^2)^2 + \dots + (x^n)^2}$. We'll follow this notation in these notes, though we would normally think of p as a *vector* in \mathbb{R}^n and we would call the quantity |p| the *norm* of p (normally denoted ||p||).

Note. In what follows, the word "function" is used to mean a mapping of some subset of \mathbb{R}^n into \mathbb{R} . A "map" is a mapping of some subset of \mathbb{R}^n into \mathbb{R}^m .

Definition. Let $\mathcal{O} \subset \mathbb{R}^n$ be open. Function $f : \mathcal{O} \to \mathbb{R}$ is *locally Lipschitz* on \mathcal{O} if for each open set $\mathcal{U} \subset \mathcal{O}$ with compact closure in \mathcal{O} there is constant $K \in \mathbb{R}$ such that for any $p, q \in \mathcal{U}$ we have $|f(p) - f(q)| \leq K|p - q|$.

Note. A locally Lipschitz function on $\mathcal{O} \subset \mathbb{R}^n$ is continuous on \mathcal{O} . This follows from the epsilon/delta definition of continuity (just let $\delta = \varepsilon/K$).

Definition. Let $\mathcal{O} \subset \mathbb{R}^n$ be open. A map $\varphi : \mathcal{O} \to \mathbb{R}^m$ is locally Lipschitz, denoted by C^{1-} , if for each point $p = (x^1, x^2, \dots, x^n) \in \mathcal{O}$, the coordinates of $\varphi(p) \in \mathbb{R}^m$, say $\varphi(p) = (x^{1\prime}, x^{2\prime}, \dots, x^{m\prime})$ are locally Lipschitz functions of x^1, x^2, \dots, x^n . Similarly, define a map as C^{r-} if it is C^{r-1} and if the (r-1)th derivatives of the coordinates of $\varphi(p)$ are locally Lipschitz functions of the coordinates of p.

Note. For more details on Lipschitz functions mapping subsets of \mathbb{R} into \mathbb{R} , see my online notes for Complex Analysis 1 (MATH 5510), "A Primer on Lipschitz Functions" at: http://faculty.etsu.edu/gardnerr/5510/CSPACE.pdf.

Note. We now formally define a "manifold" and give some examples.

Definition. A C^r *n-dimensional manifold* \mathcal{M} is a set \mathcal{M} together with a C^r atlas $\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\}$ of charts $(\mathcal{U}_{\alpha}, \varphi_{\alpha})$ where \mathcal{U}_{α} are subset of \mathcal{M} and φ_{α} are one to one maps of the corresponding \mathcal{U}_{α} to open sets in \mathbb{R}^n such that:

- (1) the \mathcal{U}_{α} cover \mathcal{M} ; that is, $\mathcal{M} = \bigcup_{\alpha} \mathcal{U}_{\alpha}$,
- (2) if $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ is nonempty then the map

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}) \to \varphi_{\alpha}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta})$$

is a C^r map of an open subset of \mathbb{R}^n to an open subset of \mathbb{R}^n .

Note. The mappings of part (2) of the definition of manifold are illustrated in Hawking and Ellis' Figure 4 of page 12:

Figure 4. In the overlap of coordinate neighbourhoods \mathscr{U}_{α} and \mathscr{U}_{β} , coordinates are related by a C^r map $\phi_{\alpha} \circ \phi_{\beta}^{-1}$.

Definition. A C^r atlas on manifold \mathcal{M} is *compatible* with a given C^r atlas on \mathcal{M} if their union is a C^r atlas on \mathcal{M} . The atlas consisting of all atlases compatible with a given atlas is the *complete atlas* for the given atlas.

Note. Hawking and Ellis say that a complete atlas is the set of all possible coordinate systems covering manifold \mathcal{M} . Wald in his *General Relativity* addresses this by requiring the collection of charts $(\mathcal{U}_{\alpha}, \varphi_{\alpha})$ to be maximal; by convention, Wald includes this in his definition of manifold (see has page 12).

Note. A basis for a topology on a set X is a collection \mathcal{B} of subsets of X such that:

- (1) for each $x \in X$ there is at least one basis element $B \in \mathcal{B}$ such that $x \in B$, and
- (2) if $x \in B_1 \cap B_2$ where $B_1, B_2 \in \mathcal{B}$ then there is $B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subset B_1 \cap B_2$.

The topology \mathcal{T} generated by \mathcal{B} is defined as: A subset $U \subset X$ is in \mathcal{T} if for each $x \in U$ there is $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. See my notes from Munkres' Topology, 2nd Edition, for "Basis for a Topology" available online: http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-13.pdf. Lemma 13.1 of these online notes states: "Let X be a set and let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} equals the collection of all unions of elements of \mathcal{B} ." Notice that for a complete atlas $\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\}$, the sets \mathcal{U}_{α} satisfy the definition of a basis for a topology on \mathcal{M} . So we put a topology on \mathcal{M} generated by $\{\mathcal{U}_{\alpha}\}$. So the open sets in the topology are, by Lemma 13.1 mentioned above, unions of elements of $\{\mathcal{U}_{\alpha}\}$. Notice that each $\varphi_{\alpha}: \mathcal{U}_{\alpha} \to \mathbb{R}^n$ is, by definition, one to one and maps \mathcal{U}_{α} to an open set $\varphi_{\alpha}(\mathcal{U}_{\alpha}) \subset \mathbb{R}^n$.

Theorem 2.1.A. For \mathcal{M} a manifold and $\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\}$ a complete atlas, each φ_{α} : $\mathcal{U}_{\alpha} \to \varphi_{\alpha}(\mathcal{U}_{\alpha}) \subset \mathbb{R}^{n}$ is a homeomorphism.

Definition. With $\mathbb{R} = \{(x^1, x^2, \dots, x^n) \mid -\infty < x^i < \infty \text{ for } i = 1, 2, \dots, n\}$, we define the *lower half of* \mathbb{R}^n as

$$\frac{1}{2}\mathbb{R}^n = \{(x^1, x^2, \dots, x^n) \mid x^1 \le 0, -\infty < x^i < \infty \text{ for } i = 2, 3, \dots, n\}.$$

Note. With n=2, $\frac{1}{2}\mathbb{R}^2$ is the closed left half-plane. This is a subset of \mathbb{R}^2 and gets the subspace topology so that the open sets in $\frac{1}{2}\mathbb{R}^2$ are of the form $\mathcal{O} \cap \frac{1}{2}\mathbb{R}^2$ where \mathcal{O} is open in \mathbb{R}^2 . So we may have open sets in $\frac{1}{2}\mathbb{R}^2$ for example, of the form $\mathcal{U} = \{(x^2, x^2) \in \frac{1}{2}\mathbb{R}^2 \mid |(x^1, x^2)| < 1\}$:

So $\frac{1}{2}\mathbb{R}^2$ has the boundary $\{(x^1, x^2) \mid x^1 = 0, -\infty < x^2 < \infty\}$, and in general $\frac{1}{2}\mathbb{R}^n$ has the boundary

$$\{(x^1, x^2, \dots, x^n) \mid x^1 = 0, -\infty < x^i < \infty \text{ for } i = 2, 3, \dots, n\}.$$

We now define a manifold with a boundary using $\frac{1}{2}\mathbb{R}^n$, similar to our definition of manifold above.

Definition. A C^r *n*-dimensional manifold \mathcal{M} with a boundary is a set \mathcal{M} together with a C^r atlas $\{\mathcal{U}_{\alpha}, \varphi_{\alpha}\}$ of charts $(\mathcal{U}_{\alpha}, \varphi_{\alpha})$ where \mathcal{U}_{α} are subset of \mathcal{M} and φ_{α} are one to one maps of the corresponding \mathcal{U}_{α} to open sets in $\frac{1}{2}\mathbb{R}^n$ such that:

- (1) the \mathcal{U}_{α} cover \mathcal{M} ; that is, $\mathcal{M} = \bigcup_{\alpha} \mathcal{U}_{\alpha}$,
- (2) if $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ is nonempty then the map

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}) \to \varphi_{\alpha}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta})$$

is a C^r map of an open subset of $\frac{1}{2}\mathbb{R}^n$ to an open subset of $\frac{1}{2}\mathbb{R}^n$.

The boundary of \mathcal{M} , denoted $\partial(\mathcal{M})$, is the set of all points of \mathcal{M} whose image under a map φ_{α} lies on the boundary of $\frac{1}{2}\mathbb{R}^n$ in \mathbb{R}^n ; that is,

$$\partial(\mathcal{M}) = \{ m \in \mathcal{M} \mid \varphi(\alpha(m) = (0, x^2, x^3, \dots, x^n) \text{ for some } \varphi_{\alpha} \}$$
 and for some $(0, x^2, x^3, \dots, n^n) \in \mathbb{R}^n \}.$

Lemma 2.1.A. $\frac{1}{2}\mathbb{R}^n$ is homeomorphic to \mathbb{R}^{n-1} .

Theorem 2.1.B. For \mathcal{M} an n-dimensional C^r manifold with a boundary, $\partial(\mathcal{M})$ is an (n-1)=dimensional C^r manifold without a boundary.

Revised: 3/30/2019