0.2. Tensors

Note. In this section we define the tensor product of two finite dimensional vector spaces, tensor, covariant, contrapositive, and illustrate these ideas with examples.

Definition 0.13. Let E and F be two real vector spaces of dimensions n and p, respectively. The *tensor product* of E and F is a vector space of dimension np, denoted $E \otimes F$. A vector of $E \otimes F$ is called a *tensor*. For $x \in E$ and $y \in F$ we we associate $x \otimes y \in E \otimes F$. This product has the following properties:

- (a) $(x_1 + x_2) \otimes y = x_1 \otimes y + x_2 \otimes y$ and $x \otimes (y_1 + y_2) = x \otimes y_1 + x \otimes y_2$ where $x, x_1, x_2 \in E$ and $y, y_1, y_2 \in F$.
- (b) If $\alpha \in \mathbb{R}$ is a scalar then

$$(\alpha x) \otimes y = x \otimes (\alpha y) = \alpha(x \otimes y).$$

- (c) If $\{e_i\}_{1 \le i \le n}$ is a basis of E and $\{f_j\}_{1 \le j \le p}$ is a basis of F, then $e_i \otimes f_j$ is a basis of $E \otimes F$.
- (d) If G is a third real vector space with $E \otimes (F \otimes G) = (E \otimes F) \otimes G$, then

$$(x \otimes y) \otimes z = x \otimes (y \otimes z)$$

for all $z \in G$.

Note. By part (d) of the definition, the product of tensors is an associative operation. However, we have not assumed commutivity. **Note/Definition.** We follow the *Einstein convention* when dealing with summations. When the index (such as i or j) is present above and below (that is, when the index is present as both a superscript and a subscript) then summation over the index is assumed. In $E \otimes F$ where where E is dimension n and F is dimension p, i is summed from 1 to n and j is summed from 1 to p.

Example. Let $x \in E$ and $y \in F$ where

$$x = \sum_{i=1}^{n} x^{i} e_{i} = x^{i} e_{i}$$
 and $y = \sum_{j=1}^{p} y^{j} f_{j} = y^{j} f_{j}$.

By (a) in the definition of product of tensors,

$$\begin{aligned} x \otimes y &= (x^i e_i) \otimes (y^j f_j) = \left(\sum_{i=1}^n x^i e_i\right) \otimes \left(\sum_{j=1}^p y^j f_j\right) \\ &= \sum_{i=1}^n \sum_{j=1}^p (x^i y^j) (e_i \otimes f_j) = x^i y^j e_i \otimes f_j. \end{aligned}$$

So the components of $x \otimes y$ with respect to the basis $\{e_i \otimes f_j\}$ (for $1 \leq i \leq n$ and $1 \leq j \leq p$) of $E \otimes F$ are $t^{ij} = x^i y^j$.

Note. Suppose that both $\{e_i\}_{1 \le i \le n}$ and $\{\tilde{e}_{\alpha}\}_{1 \le \alpha \le n}$ are bases for E and that both $\{f_j\}_{1 \le j \le p}$ and $\{\tilde{b}_{\beta}\}_{1 \le \beta \le p}$ are bases for F. Then we can write

$$\tilde{e}_{\alpha} = \sum_{i=1}^{n} a^{i}_{\alpha} e_{i} = a^{i}_{\alpha} e_{i} \text{ and } \tilde{f}_{\beta} = \sum_{\beta=1}^{p} c^{j}_{\beta} f_{j} = c^{j}_{\beta} f_{j},$$

or

$$e_i = \sum_{\alpha=1}^n b_i^{\alpha} \tilde{e}_{\alpha} = b_i^{\alpha} \tilde{e}_{\alpha} \text{ and } f_j = \sum_{\beta=1}^p d_j^{\beta} \tilde{f}_{\beta} = d_j^{\beta} \tilde{f}_{\beta}$$

Here, the matrices (a_{α}^{i}) (with $1 \leq i, \alpha \leq n$) and (b_{i}^{α}) (with $1 \leq i, \alpha \leq n$) are inverses of each other, and matrices (c_{β}^{j}) (with $1 \leq j, \beta \leq p$) and (d_{j}^{β}) (with $1 \leq j, \beta \leq p$) are inverses of each other:

$$(b_i^{\alpha})(a_{\alpha}^i) = \begin{pmatrix} b_1^1 & b_1^2 & \cdots & b_1^n \\ b_2^1 & b_2^2 & \cdots & b_2^n \\ \vdots & \vdots & \ddots & \vdots \\ b_n^1 & b_n^2 & \cdots & b_n^n \end{pmatrix} \begin{pmatrix} a_1^1 & a_1^2 & \cdots & a_1^n \\ a_2^1 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & \ddots & \vdots \\ a_n^1 & a_n^2 & \cdots & a_n^n \end{pmatrix}$$
$$= \begin{pmatrix} b_1^{\alpha} a_{\alpha}^1 & b_1^{\alpha} a_{\alpha}^2 & \cdots & b_1^{\alpha} a_{\alpha}^n \\ b_2^{\alpha} a_{\alpha}^1 & b_2^{\alpha} a_{\alpha}^2 & \cdots & b_2^{\alpha} a_{\alpha}^n \\ \vdots & \vdots & \ddots & \vdots \\ b_n^{\alpha} a_{\alpha}^1 & b_n^{\alpha} a_{\alpha}^2 & \cdots & b_n^{\alpha} a_{\alpha}^n \end{pmatrix} = (b_i^{\alpha} a_{\alpha}^j)$$

where $e_i = b_i^{\alpha} \tilde{e}_{\alpha} = b_i^{\alpha} (a_{\alpha}^j e_j) = b_i^{\alpha} a_{\alpha}^j e_j$ so that $b_i^{\alpha} a_{\alpha}^j = \delta_i^j = \begin{cases} 0 \text{ if } i = j \\ 1 \text{ if } i \neq j \end{cases}$ and hence $(b_{\alpha}^{\alpha})(a^i) = \mathcal{T}$. Here, δ^j is called the Kronecker tensor. Similarly, $(a^j)(b)i^{\alpha}) = \mathcal{T}$.

 $(b_i^{\alpha})(a_{\alpha}^i) = \mathcal{I}$. Here, δ_i^j is called the *Kronecker tensor*. Similarly, $(a_{\alpha}^j)(b)i^{\alpha}) = \mathcal{I}$ (or this follows since the matrices are square; see "Theorem 1.11. A Commutative Property" in my online notes for 1.5. Inverses of Square Matrices). So for tensor $T = t^{\alpha\beta} \tilde{e}_{\alpha} \otimes \tilde{f}_{\beta} = t^{ij} e_i \otimes f_j$ we have

$$T = t^{ij} e_i \otimes f_j = t^{ij} (b_i^{\alpha} \tilde{e}_{\alpha}) \otimes (d_j^{\beta} \tilde{f}_{\beta}) = t^{ij} b_i^{\alpha} d_j^{\beta} \tilde{e}_{\alpha} \otimes \tilde{f}_{\beta} = t^{\alpha\beta} \tilde{a}_{\alpha} \otimes \tilde{f}_{\beta}$$

so that we can relate the coordinates of T with respect to the different bases as $t^{\alpha\beta} = t^{ij}b_i^{\alpha}d_j^{\beta}$ and similarly $t^{ij} = t^{\alpha\beta}a_{\alpha}^i c_{\beta}^j$.

Note/Definition. Recall that the collection of linear mappings between (finite dimensional real) vector spaces X and Y form a vector space themselves, denoted L(X,Y) (see page 24 of C.T.J Dodson and T. Poston's Tensor Geometry: The Geometric Viewpoint and its Uses, 2nd Edition, Graduate Texts in Mathematics #130, Springer Verlag (1991)). In fact, if X is dimension m and Y is dimension n, so that $X \cong \mathbb{R}^n$ and $Y \cong \mathbb{R}^m$ (by the Fundamental Theorem of Finite Dimensional Vector Spaces; see my online notes for 3.3 Coordinatization of Vectors, page 5), then each element of L(X,Y) is represented by a $m \times n$ matrix (see my online notes for 3.4. Linear Transformations, "Theorem 3.10. Matrix Representations of Linear Transformations" on page 10). Here, we interpret the vectors in \mathbb{R}^n and \mathbb{R}^m as column vectors. In the event that $Y = \mathbb{R}$, an element of $L(X, \mathbb{R})$ is called a *linear functional* (or *dual vector* or *covariant vector*). The vector space $L(X, \mathbb{R})$ is the dual space of X, denoted X^* (see page 57 of Tensor Geometry). With $X = \mathbb{R}^n$, the vector space of *n*-dimensional column vectors, the dual space is X^* the vector space of *n*-dimensional row vectors. We then get the functional action produced by multiplying $n \times 1$ vector $x \in X$ on the left by some $1 \times n$ vector $y \in X^*$, producing effectively a dot product. We should not that above, $m \times n$ matrix A is applied to *n*-dimensional column vector x to produce *m*-dimensional column vector $Ax \in Y$ (otherwise we take row vectors in \mathbb{R}^n and \mathbb{R}^m and an $n \times m$ matrix A to get xA, an *m*-dimensional row vector). In what follows, we consider *n*-dimensional real vector space E and its dual E^* . For the sake of illustration, we take the elements of E as column vectors and the elements of E^* as row vectors.

Definition 0.14. A (p,q)-tensor associated to a vector space E of dimension n is a tensor of $E_1 \otimes E_2 \otimes \cdots \otimes E_{p+q}$ where $E_i = E$ for q values of i and $E_j = E^*$, the dual space of E, for p values of j. The tensor is said to be p times covariant and qtimes contravariant. We denote the set of (p,q) tensor attached to E as $\overset{p}{\otimes} E^* \overset{q}{\otimes} E$.

Revised: 4/27/2019