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0.2. Tensors

Note. In this section we define the tensor product of two finite dimensional vector

spaces, tensor, covariant, contrapositive, and illustrate these ideas with examples.

Definition 0.13. Let E and F be two real vector spaces of dimensions n and p,

respectively. The tensor product of E and F is a vector space of dimension np,

denoted E ⊗ F . A vector of E ⊗ F is called a tensor. For x ∈ E and y ∈ F we we

associate x⊗ y ∈ E ⊗ F . This product has the following properties:

(a) (x1 + x2) ⊗ y = x1 ⊗ y + x2 ⊗ y and x ⊗ (y1 + y2) = x ⊗ y1 + x ⊗ y2 where

x, x1, x2 ∈ E and y, y1, y2 ∈ F .

(b) If α ∈ R is a scalar then

(αx)⊗ y = x⊗ (αy) = α(x⊗ y).

(c) If {ei}1≤i≤n is a basis of E and {fj}1≤j≤p is a basis of F , then ei ⊗ fj is a basis

of E ⊗ F .

(d) If G is a third real vector space with E ⊗ (F ⊗G) = (E ⊗ F )⊗G, then

(x⊗ y)⊗ z = x⊗ (y ⊗ z)

for all z ∈ G.

Note. By part (d) of the definition, the product of tensors is an associative oper-

ation. However, we have not assumed commutivity.
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Note/Definition. We follow the Einstein convention when dealing with summa-

tions. When the index (such as i or j) is present above and below (that is, when

the index is present as both a superscript and a subscript) then summation over

the index is assumed. In E ⊗F where where E is dimension n and F is dimension

p, i is summed from 1 to n and j is summed from 1 to p.

Example. Let x ∈ E and y ∈ F where

x =
n∑

i=1

xiei = xiei and y =

p∑
j=1

yjfj = yjfj.

By (a) in the definition of product of tensors,

x⊗ y = (xiei)⊗ (yjfj) =

(
n∑

i=1

xiei

)
⊗

(
p∑

j=1

yjfj

)

=
n∑

i=1

p∑
j=1

(xiyj)(ei ⊗ fj) = xiyj ei ⊗ fj.

So the components of x⊗ y with respect to the basis {ei ⊗ fj} (for 1 ≤ i ≤ n and

1 ≤ j ≤ p) of E ⊗ F are tij = xiyj.

Note. Suppose that both {ei}1≤i≤n and {ẽα}1≤α≤n are bases for E and that both

{fj}1≤j≤p and {b̃β}1≤β≤p are bases for F . Then we can write

ẽα =
n∑

i=1

ai
αei = ai

αei and f̃β =

p∑
β=1

cj
βfj = cj

βfj,

or

ei =
n∑

α=1

bα
i ẽα = bα

i ẽα and fj =

p∑
β=1

dβ
j f̃β = dβ

j f̃β.
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Here, the matrices (ai
α) (with 1 ≤ i, α ≤ n) and (bα

i ) (with 1 ≤ i, α ≤ n) are inverses

of each other, and matrices (cj
β) (with 1 ≤ j, β ≤ p) and (dβ

j ) (with 1 ≤ j, β ≤ p)

are inverses of each other:

(bα
i )(ai

α) =


b1
1 b2

1 · · · bn
1

b1
2 b2

2 · · · bn
2

...
... . . . ...

b1
n b2

n · · · bn
n




a1

1 a2
1 · · · an

1

a1
2 a2

2 · · · an
2

...
... . . . ...

a1
n a2

n · · · an
n



=


bα
1a1

α bα
1a2

α · · · bα
1an

α

bα
2a1

α bα
2a2

α · · · bα
2an

α

...
... . . . ...

bα
na1

α bα
na2

α · · · bα
nan

α

 = (bα
i aj

α)

where ei = bα
i ẽα = bα

i (aj
αej) = bα

i aj
αej so that bα

i aj
α = δj

i =

 0 if i = j

1 if i 6= j
and hence

(bα
i )(ai

α) = I. Here, δj
i is called the Kronecker tensor. Similarly, (aj

α)(b)iα) = I

(or this follows since the matrices are square; see “Theorem 1.11. A Commutative

Property” in my online notes for 1.5. Inverses of Square Matrices). So for tensor

T = tαβ ẽα ⊗ f̃β = tij ei ⊗ fj we have

T = tij ei ⊗ fj = tij(bα
i ẽα)⊗ (dβ

j f̃β) = tij bα
i dβ

j ẽα ⊗ f̃β = tαβ ãα ⊗ f̃β

so that we can relate the coordinates of T with respect to the different bases as

tαβ = tijbα
i dβ

j and similarly tij = tαβai
αcj

β.

http://faculty.etsu.edu/gardnerr/2010/c1s5.pdf
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Note/Definition. Recall that the collection of linear mappings between (finite

dimensional real) vector spaces X and Y form a vector space themselves, denoted

L(X, Y ) (see page 24 of C.T.J Dodson and T. Poston’s Tensor Geometry: The

Geometric Viewpoint and its Uses, 2nd Edition, Graduate Texts in Mathematics

#130, Springer Verlag (1991)). In fact, if X is dimension m and Y is dimension n,

so that X ∼= Rn and Y ∼= Rm (by the Fundamental Theorem of Finite Dimensional

Vector Spaces; see my online notes for 3.3 Coordinatization of Vectors, page 5),

then each element of L(X, Y ) is represented by a m × n matrix (see my online

notes for 3.4. Linear Transformations, “Theorem 3.10. Matrix Representations of

Linear Transformations” on page 10). Here, we interpret the vectors in Rn and Rm

as column vectors. In the event that Y = R, an element of L(X, R) ix called a

linear functional (or dual vector or covariant vector). The vector space L(X, R) is

the dual space of X, denoted X∗ (see page 57 of Tensor Geometry). With X = Rn,

the vector space of n-dimensional column vectors, the dual space is X∗ the vector

space of n-dimensional row vectors. We then get the functional action produced by

multiplying n× 1 vector x ∈ X on the left by some 1×n vector y ∈ X∗, producing

effectively a dot product. We should not that above, m× n matrix A is applied to

n-dimensional column vector x to produce m-dimensional column vector Ax ∈ Y

(otherwise we take row vectors in Rn and Rm and an n×m matrix A to get xA, an

m-dimensional row vector). In what follows, we consider n-dimensional real vector

space E and its dual E∗. For the sake of illustration, we take the elements of E as

column vectors and the elements of E∗ as row vectors.

http://faculty.etsu.edu/gardnerr/2010/c3s3.pdf
http://faculty.etsu.edu/gardnerr/2010/c3s4.pdf
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Definition 0.14. A (p, q)-tensor associated to a vector space E of dimension n is

a tensor of E1 ⊗ E2 ⊗ · · · ⊗ Ep+q where Ei = E for q values of i and Ej = E∗, the

dual space of E, for p values of j. The tensor is said to be p times covariant and q

times contravariant. We denote the set of (p, q) tensor attached to E as
p
⊗ E∗ q

⊗ E.
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