0.2. Tensors

Note. In this section we define the tensor product of two finite dimensional vector spaces, tensor, covariant, contrapositive, and illustrate these ideas with examples.

Definition 0.13. Let E and F be two real vector spaces of dimensions n and p, respectively. The tensor product of E and F is a vector space of dimension $n p$, denoted $E \otimes F$. A vector of $E \otimes F$ is called a tensor. For $x \in E$ and $y \in F$ we we associate $x \otimes y \in E \otimes F$. This product has the following properties:
(a) $\left(x_{1}+x_{2}\right) \otimes y=x_{1} \otimes y+x_{2} \otimes y$ and $x \otimes\left(y_{1}+y_{2}\right)=x \otimes y_{1}+x \otimes y_{2}$ where $x, x_{1}, x_{2} \in E$ and $y, y_{1}, y_{2} \in F$.
(b) If $\alpha \in \mathbb{R}$ is a scalar then

$$
(\alpha x) \otimes y=x \otimes(\alpha y)=\alpha(x \otimes y)
$$

(c) If $\left\{e_{i}\right\}_{1 \leq i \leq n}$ is a basis of E and $\left\{f_{j}\right\}_{1 \leq j \leq p}$ is a basis of F, then $e_{i} \otimes f_{j}$ is a basis of $E \otimes F$.
(d) If G is a third real vector space with $E \otimes(F \otimes G)=(E \otimes F) \otimes G$, then

$$
(x \otimes y) \otimes z=x \otimes(y \otimes z)
$$

for all $z \in G$.

Note. By part (d) of the definition, the product of tensors is an associative operation. However, we have not assumed commutivity.

Note/Definition. We follow the Einstein convention when dealing with summations. When the index (such as i or j) is present above and below (that is, when the index is present as both a superscript and a subscript) then summation over the index is assumed. In $E \otimes F$ where where E is dimension n and F is dimension p, i is summed from 1 to n and j is summed from 1 to p.

Example. Let $x \in E$ and $y \in F$ where

$$
x=\sum_{i=1}^{n} x^{i} e_{i}=x^{i} e_{i} \text { and } y=\sum_{j=1}^{p} y^{j} f_{j}=y^{j} f_{j} .
$$

By (a) in the definition of product of tensors,

$$
\begin{aligned}
x \otimes y & =\left(x^{i} e_{i}\right) \otimes\left(y^{j} f_{j}\right)=\left(\sum_{i=1}^{n} x^{i} e_{i}\right) \otimes\left(\sum_{j=1}^{p} y^{j} f_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{p}\left(x^{i} y^{j}\right)\left(e_{i} \otimes f_{j}\right)=x^{i} y^{j} e_{i} \otimes f_{j} .
\end{aligned}
$$

So the components of $x \otimes y$ with respect to the basis $\left\{e_{i} \otimes f_{j}\right\}$ (for $1 \leq i \leq n$ and $1 \leq j \leq p)$ of $E \otimes F$ are $t^{i j}=x^{i} y^{j}$.

Note. Suppose that both $\left\{e_{i}\right\}_{1 \leq i \leq n}$ and $\left\{\tilde{e}_{\alpha}\right\}_{1 \leq \alpha \leq n}$ are bases for E and that both $\left\{f_{j}\right\}_{1 \leq j \leq p}$ and $\left\{\tilde{b}_{\beta}\right\}_{1 \leq \beta \leq p}$ are bases for F. Then we can write

$$
\tilde{e}_{\alpha}=\sum_{i=1}^{n} a_{\alpha}^{i} e_{i}=a_{\alpha}^{i} e_{i} \text { and } \tilde{f}_{\beta}=\sum_{\beta=1}^{p} c_{\beta}^{j} f_{j}=c_{\beta}^{j} f_{j},
$$

or

$$
e_{i}=\sum_{\alpha=1}^{n} b_{i}^{\alpha} \tilde{e}_{\alpha}=b_{i}^{\alpha} \tilde{e}_{\alpha} \text { and } f_{j}=\sum_{\beta=1}^{p} d_{j}^{\beta} \tilde{f}_{\beta}=d_{j}^{\beta} \tilde{f}_{\beta} .
$$

Here, the matrices $\left(a_{\alpha}^{i}\right)$ (with $1 \leq i, \alpha \leq n$) and (b_{i}^{α}) (with $1 \leq i, \alpha \leq n$) are inverses of each other, and matrices $\left(c_{\beta}^{j}\right)$ (with $1 \leq j, \beta \leq p$) and (d_{j}^{β}) (with $1 \leq j, \beta \leq p$) are inverses of each other:

$$
\begin{aligned}
\left(b_{i}^{\alpha}\right)\left(a_{\alpha}^{i}\right) & =\left(\begin{array}{cccc}
b_{1}^{1} & b_{1}^{2} & \cdots & b_{1}^{n} \\
b_{2}^{1} & b_{2}^{2} & \cdots & b_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n}^{1} & b_{n}^{2} & \cdots & b_{n}^{n}
\end{array}\right)\left(\begin{array}{cccc}
a_{1}^{1} & a_{1}^{2} & \cdots & a_{1}^{n} \\
a_{2}^{1} & a_{2}^{2} & \cdots & a_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n}^{1} & a_{n}^{2} & \cdots & a_{n}^{n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
b_{1}^{\alpha} a_{\alpha}^{1} & b_{1}^{\alpha} a_{\alpha}^{2} & \cdots & b_{1}^{\alpha} a_{\alpha}^{n} \\
b_{2}^{\alpha} a_{\alpha}^{1} & b_{2}^{\alpha} a_{\alpha}^{2} & \cdots & b_{2}^{\alpha} a_{\alpha}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n}^{\alpha} a_{\alpha}^{1} & b_{n}^{\alpha} a_{\alpha}^{2} & \cdots & b_{n}^{\alpha} a_{\alpha}^{n}
\end{array}\right)=\left(b_{i}^{\alpha} a_{\alpha}^{j}\right)
\end{aligned}
$$

where $e_{i}=b_{i}^{\alpha} \tilde{e}_{\alpha}=b_{i}^{\alpha}\left(a_{\alpha}^{j} e_{j}\right)=b_{i}^{\alpha} a_{\alpha}^{j} e_{j}$ so that $b_{i}^{\alpha} a_{\alpha}^{j}=\delta_{i}^{j}=\left\{\begin{array}{l}0 \text { if } i=j \\ 1 \text { if } i \neq j\end{array}\right.$ and hence $\left(b_{i}^{\alpha}\right)\left(a_{\alpha}^{i}\right)=\mathcal{I}$. Here, δ_{i}^{j} is called the Kronecker tensor. Similarly, $\left.\left(a_{\alpha}^{j}\right)(b) i^{\alpha}\right)=\mathcal{I}$ (or this follows since the matrices are square; see "Theorem 1.11. A Commutative Property" in my online notes for 1.5. Inverses of Square Matrices). So for tensor $T=t^{\alpha \beta} \tilde{e}_{\alpha} \otimes \tilde{f}_{\beta}=t^{i j} e_{i} \otimes f_{j}$ we have

$$
T=t^{i j} e_{i} \otimes f_{j}=t^{i j}\left(b_{i}^{\alpha} \tilde{e}_{\alpha}\right) \otimes\left(d_{j}^{\beta} \tilde{f}_{\beta}\right)=t^{i j} b_{i}^{\alpha} d_{j}^{\beta} \tilde{e}_{\alpha} \otimes \tilde{f}_{\beta}=t^{\alpha \beta} \tilde{a}_{\alpha} \otimes \tilde{f}_{\beta}
$$

so that we can relate the coordinates of T with respect to the different bases as $t^{\alpha \beta}=t^{i j} b_{i}^{\alpha} d_{j}^{\beta}$ and similarly $t^{i j}=t^{\alpha \beta} a_{\alpha}^{i} c_{\beta}^{j}$.

Note/Definition. Recall that the collection of linear mappings between (finite dimensional real) vector spaces X and Y form a vector space themselves, denoted $L(X, Y)$ (see page 24 of C.T.J Dodson and T. Poston's Tensor Geometry: The Geometric Viewpoint and its Uses, 2nd Edition, Graduate Texts in Mathematics \#130, Springer Verlag (1991)). In fact, if X is dimension m and Y is dimension n, so that $X \cong \mathbb{R}^{n}$ and $Y \cong \mathbb{R}^{m}$ (by the Fundamental Theorem of Finite Dimensional Vector Spaces; see my online notes for 3.3 Coordinatization of Vectors, page 5), then each element of $L(X, Y)$ is represented by a $m \times n$ matrix (see my online notes for 3.4. Linear Transformations, "Theorem 3.10. Matrix Representations of Linear Transformations" on page 10). Here, we interpret the vectors in \mathbb{R}^{n} and \mathbb{R}^{m} as column vectors. In the event that $Y=\mathbb{R}$, an element of $L(X, \mathbb{R})$ ix called a linear functional (or dual vector or covariant vector). The vector space $L(X, \mathbb{R})$ is the dual space of X, denoted X^{*} (see page 57 of Tensor Geometry). With $X=\mathbb{R}^{n}$, the vector space of n-dimensional column vectors, the dual space is X^{*} the vector space of n-dimensional row vectors. We then get the functional action produced by multiplying $n \times 1$ vector $x \in X$ on the left by some $1 \times n$ vector $y \in X^{*}$, producing effectively a dot product. We should not that above, $m \times n$ matrix A is applied to n-dimensional column vector x to produce m-dimensional column vector $A x \in Y$ (otherwise we take row vectors in \mathbb{R}^{n} and \mathbb{R}^{m} and an $n \times m$ matrix A to get $x A$, an m-dimensional row vector). In what follows, we consider n-dimensional real vector space E and its dual E^{*}. For the sake of illustration, we take the elements of E as column vectors and the elements of E^{*} as row vectors.

Definition 0.14. A (p, q)-tensor associated to a vector space E of dimension n is a tensor of $E_{1} \otimes E_{2} \otimes \cdots \otimes E_{p+q}$ where $E_{i}=E$ for q values of i and $E_{j}=E^{*}$, the dual space of E, for p values of j. The tensor is said to be p times covariant and q times contravariant. We denote the set of (p, q) tensor attached to E as $\stackrel{p}{\otimes} E^{*} \stackrel{q}{\otimes} E$.

