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0.2. Tensors

Note. In this section we define the tensor product of two finite dimensional vector

spaces, tensor, covariant, contrapositive, and illustrate these ideas with examples.

Definition 0.13. Let E and F' be two real vector spaces of dimensions n and p,
respectively. The tensor product of E and F' is a vector space of dimension np,
denoted £ ® F. A vector of E ® I is called a tensor. For x € E and y € F we we

associate r ® y € ' ® F. This product has the following properties:

@) (T114+22)@y=21y+ 2@y and 2 ® (y1 + ¥2) = T @ Y1 + T @ Yy, where

X,T1,%2 € E and Y, Y1, Y2 € F.
(b) If @ € R is a scalar then
(az) @y =1 @ (ay) = a(z @ y).

(c) If {e;}1<i<n is a basis of E and {f;}i1<j<p is a basis of F', then e; ® f; is a basis
of F® F.

(d) If G is a third real vector space with E® (F ® G) = (F ® F) ® G, then
z®y)@z=2(y®z2)

for all z € G.

Note. By part (d) of the definition, the product of tensors is an associative oper-

ation. However, we have not assumed commutivity.
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Note/Definition. We follow the Finstein convention when dealing with summa-
tions. When the index (such as i or j) is present above and below (that is, when
the index is present as both a superscript and a subscript) then summation over
the index is assumed. In £ ® F' where where F is dimension n and F' is dimension

p, 1 is summed from 1 to n and 5 is summed from 1 to p.

Example. Let x € F and y € F' where
n . . D . .
r= Z:{:Zei =z'e; and y = Zyjfj =y’ f;.
i=1 j=1

By (a) in the definition of product of tensors,

TRy =(r'e)® (y f] (Zx eZ> ® (Z yjfj>

n p
Y @y)e® f) =a'y e @ f;.
=1 j5=1

So the components of x ® y with respect to the basis {e; ® f;} (for 1 <i < n and

<

1<j<p)of EQF aretV = xiy’.

Note. Suppose that both {e;}1<i<, and {€,}1<a<n are bases for E and that both

{fiti<j<p and {bs}1<s<, are bases for F. Then we can write

—Zaez—aezandfzzp:cjﬁ i

6=1

or
p

e =) e =0e, and f; = dfy=dfs.
a=1 f=1
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Here, the matrices (a’,) (with 1 <i,a <n)and (b$) (with 1 <i,a < n) are inverses
of each other, and matrices (cé) (with 1 < 7,8 < p) and (df) (with 1 < 7,8 <p)
are inverses of each other:

(ol 6 b\ (ol @t ap)

1 2 n 1 2 n
bQ bQ b2 as az --- aj

(b)(aq) =

\ bl B e bg/ \al a2 - ar )

((bal bpad - bjal )

bSal 05a? --- ba® .
o R
\ biak el - b )
e . NP 0if i = j
where e; = b'é, = bf'(ale;) = bf'ale; so that bf'al, = 0] = Liti 4 and hence
ifi # 7

(b9)(al,) = Z. Here, ¢/ is called the Kronecker tensor. Similarly, (af)(b)i®) = T
(or this follows since the matrices are square; see “Theorem 1.11. A Commutative
Property” in my online notes for 1.5. Inverses of Square Matrices). So for tensor

T=t"Y¢,® fg =t e; ® f; we have
T=t1e;® f;=t7(be) ® (d f5) = t7b0d) 60 @ f3 =1"" a0 ® f3

so that we can relate the coordinates of T' with respect to the different bases as

8 = i b?d? and similarly ¢ = t*%a/,c}.


http://faculty.etsu.edu/gardnerr/2010/c1s5.pdf
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Note/Definition. Recall that the collection of linear mappings between (finite
dimensional real) vector spaces X and Y form a vector space themselves, denoted
L(X,Y) (see page 24 of C.T.J Dodson and T. Poston’s Tensor Geometry: The
Geometric Viewpoint and its Uses, 2nd Edition, Graduate Texts in Mathematics
#130, Springer Verlag (1991)). In fact, if X is dimension m and Y is dimension n,
so that X = R" and Y = R™ (by the Fundamental Theorem of Finite Dimensional
Vector Spaces; see my online notes for 3.3 Coordinatization of Vectors, page 5),
then each element of L(X,Y) is represented by a m x n matrix (see my online
notes for 3.4. Linear Transformations, “Theorem 3.10. Matrix Representations of
Linear Transformations” on page 10). Here, we interpret the vectors in R” and R™
as column vectors. In the event that Y = R, an element of L(X,R) ix called a
linear functional (or dual vector or covariant vector). The vector space L(X,R) is
the dual space of X, denoted X™ (see page 57 of Tensor Geometry). With X = R",
the vector space of n-dimensional column vectors, the dual space is X* the vector
space of n-dimensional row vectors. We then get the functional action produced by
multiplying n x 1 vector x € X on the left by some 1 x n vector y € X*, producing
effectively a dot product. We should not that above, m x n matrix A is applied to
n-dimensional column vector x to produce m-dimensional column vector Az € Y
(otherwise we take row vectors in R" and R™ and an n x m matrix A to get xA, an
m-~dimensional row vector). In what follows, we consider n-dimensional real vector
space E and its dual E*. For the sake of illustration, we take the elements of E as

column vectors and the elements of E* as row vectors.


http://faculty.etsu.edu/gardnerr/2010/c3s3.pdf
http://faculty.etsu.edu/gardnerr/2010/c3s4.pdf

0.2. Tensors 5

Definition 0.14. A (p, q)-tensor associated to a vector space E of dimension n is
a tensor of By ® By ® -+ - ® Iy, , where F; = I for g values of ¢ and E; = £, the
dual space of E, for p values of 5. The tensor is said to be p times covariant and q

p q
times contravariant. We denote the set of (p, q) tensor attached to £ as ® F* @ E.
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