### 1.3. The Spacetime Metric

Note. The Lorentz transformation of Section 1.2 shows that different observers do not agree on spatial and temporal measurements. If we use a delta (" $\Delta$ ") to represent changes in a quantity then we get the following relations from the Lorentz transformation:

$$
\Delta t^{\prime}=\frac{\Delta t-v \Delta x / c}{\sqrt{1-v^{2} / c^{2}}}, \quad \Delta x^{\prime}=\frac{\Delta x-v t}{\sqrt{1-v^{2} / c^{2}}}, \quad \Delta y^{\prime}=\Delta y, \quad \Delta z^{\prime}=\Delta z
$$

Definition. The (spacetime) interval between two events $\left(t_{1}, x_{1}, y_{1}, z_{1}\right)$ and $\left(t_{2}, x_{2}, y_{2}, z_{2}\right)$ is

$$
I=-(\Delta t)^{2}+\frac{1}{c^{2}}\left((\Delta t)^{2}+(\Delta y)^{2}+(\Delta z)^{2}\right)
$$

where $\Delta t=t_{2}-t_{1}, \Delta x=x_{2}-x_{1}, \Delta y=y_{2}-y_{1}$, and $\Delta z=z_{2}-z_{1}$.

Note. Let $p_{1}=\left(t_{1}, x_{1}, y_{1}, z_{1}\right)=\left(t_{1}^{\prime}, x_{1}^{\prime}, y_{1}^{\prime}, z_{1}^{\prime}\right)$ and $p_{2}=\left(t_{2}, x_{2}, y_{2}, z_{2}\right)=\left(t_{2}^{\prime}, x_{2}^{\prime}, y_{2}^{\prime}, z_{2}^{\prime}\right)$ be events where the coordinates $(t, x, y, z)$ and ( $t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ ) are related by the Lorentz transformation. Then the intervals $I$ and $I^{\prime}$ satisfy:

$$
\begin{aligned}
I^{\prime}= & -\left(\Delta t^{\prime}\right)^{2}+\frac{1}{c^{2}}\left(\left(\Delta x^{\prime}\right)^{2}+\left(\Delta y^{\prime}\right)^{2}+\left(\Delta z^{\prime}\right)^{2}\right) \\
= & -\left(\frac{\Delta t-v \Delta x / c^{2}}{\sqrt{1-v^{2} / c^{2}}}\right)^{2}+\frac{1}{c^{2}}\left(\frac{\Delta x-v \Delta t}{\sqrt{1-v^{2} / c^{2}}}\right)^{2}+\frac{(\Delta y)^{2}}{c^{2}}+\frac{(\Delta z)^{2}}{c^{2}} \\
= & \frac{-(\Delta t)^{2}+2 v \Delta t \Delta x / c^{2}-v^{2}(\Delta x)^{2} / c^{4}+(\Delta x)^{2} / c^{2}-2 v \Delta t \Delta x / c^{2}+v^{2}(\Delta t)^{2} / c^{2}}{1-v^{2} / c^{2}} \\
& +\frac{(\Delta y)^{2}}{c^{2}}+\frac{(\Delta z)^{2}}{c^{2}} \\
= & \frac{-(\Delta t)^{2}\left(1-v^{2} / c^{2}\right)}{1-v^{2} / c^{2}}+\frac{1}{c^{2}} \frac{(\Delta x)^{2}\left(1-v^{2} / c^{2}\right.}{1-v^{2} / c^{2}}+\frac{(\Delta y)^{2}}{c^{2}}+\frac{(\Delta z)^{2}}{c^{2}}
\end{aligned}
$$

$$
=-(\Delta t)^{2}+\frac{1}{c^{2}}\left((\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}\right)=I
$$

That is, inertial observers disagree on the temporal and spatial separation between two events but they agree on the interval between two events. This reveals the ironic fact that special relativity deals with a quantity that is an absolute between inertial frames: The interval. The interval is the "spacetime metric" in the title of this section (though, strictly speaking, it is not a metric since metrics must be nonnegative-valued).

Note. We can now see how there is a relativity of simultaneity. That is, if for events $p_{1}$ and $p_{2}$ (with the notation above), we may have $\Delta t=0$ (and simultaneity of the events in $(t, x, y, z)$ coordinates) but $\Delta t^{\prime} \neq 0$ (and nonsimultaneity in $\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$ coordinates). Since $I=I^{\prime}$, we would need $(\Delta x)^{2}=-\left(\Delta t^{\prime}\right)^{2}+\left(\Delta x^{\prime}\right)^{2}$. This is amusingly illustrated in Problem 1.1.

