Chapter 2: Manifolds and Tensor Fields

2.1. Manifolds

Note. An *event* is a point in spacetime. In prerelativity physics and in special relativity, the space of all events is \mathbb{R}^4 . In general relativity, we will keep the idea that spacetime is locally "like" \mathbb{R}^4 , but allow spacetime to have geometric properties different from \mathbb{R}^4 (that is, we do not require spacetime to be flat). This is analogous to the fact that the Earth is locally like \mathbb{R}^2 , but is globally different from \mathbb{R}^2 .

Note. When making an analogy with the surface of the Earth, we take advantage of the fact that a sphere is embedded in 3-space (an *extrinsic* property). When considering all of spacetime, it would not make sense to think of how it is embedded in a higher dimensional space (for this would imply something "outside" of the universe, and such things are beyond science — if not beyond meaning!). We must therefore study spacetime from within (that is, we can only study *intrinsic* properties of spacetime). For such a study, we need to develop the abstract idea of an n-manifold.

Definition. Let $x = (x^1, x^2, ..., x^n)$ and $y = (y^1, y^2, ..., y^n)$ be points in \mathbb{R}^n . Define the (Euclidean) *distance* between x and y as

$$|x-y| = \left[\sum_{\mu=1}^{n} (x^{\mu} - y^{\mu})^2\right]^{1/2}$$

The open ball in \mathbb{R}^n of center y and radius r is

$$\left\{ x \in \mathbb{R}^n \mid |x - y| < r \right\}.$$

An *open set* in \mathbb{R}^n is any set which can be expressed as an arbitrary union of open balls.

Note. In fact, an open set in \mathbb{R}^n can be expressed as a countable collection of open balls. This is called the *Lindelöf Property* of \mathbb{R}^n .

Definition. A function $\varphi : X \to Y$ is *one-to-one* if for distinct $x^1, x^2 \in X$ we have $\varphi(x^1) \neq \varphi(x^2)$. (If a function φ is one-to-one, then we can define its inverse φ^{-1} .) The function φ is *onto* if for each $y \in Y$, there exists $x \in X$ such that $\varphi(x) = y$. If $\varphi : X \to \mathbb{R}^n$ (where X is any set) then φ is C^{∞} is φ is infinitely differentiable. (Notice that φ is a vector valued function and should be treated as an *n*-tuple of scalar valued functions $\varphi = (\varphi^1, \varphi^2, \dots, \varphi^n)$. Saying φ is infinitely differentiable is equivalent to saying that φ^{μ} is infinitely differentiable for each μ . It does not make sense to talk about the differentiability of a function between arbitrary *sets* — we need more structure than that.)

Note. In the opinion of your humble instructor, a manifold is best thought of in terms of paper mache. As opposed to taking small pieces of paper (which represent little open sets from a 2-dimensional vector space) and soaking them in water and glue (allowing us to bend and warp the pieces; that is, to continuously transform them), we consider small pieces of n-dimensional space which are mapped continuously to open subsets of the manifold. Instead of pasting the pieces of paper onto a wire frame and overlapping them, we require that the continuous mappings compose to give a certain level of differentiability. More precisely, we have the following.

Definition. An *n*-dimensional, C^{∞} , real manifold is a set of M points together with a collection $\{O_{\alpha}\}$ of subsets of M such that

- **1.** $\bigcup_{\alpha} O_{\alpha} = M.$
- **2.** For each α , there is a one-to-one and onto map $\psi_{\alpha} : O_{\alpha} \to U_{\alpha}$ where U_{α} is an open subset of \mathbb{R}^n .
- **3.** For any two $O_{\alpha}, O_{\beta} \subset M$ with $O_{\alpha} \cap O_{\beta} \neq \emptyset$. We have the sets $\psi_{\alpha}[O_{\alpha} \cap O_{\beta}] \subset \mathbb{R}^{n}$ and $\psi_{\beta}[O_{\alpha} \cap O_{\beta}] \subset \mathbb{R}^{n}$ open and the function $\psi_{\beta} \circ \psi_{\alpha}^{-1}$ is C^{∞} .

Notice that $\psi_{\beta} \circ \psi_{\alpha}^{-1}$ maps \mathbb{R}^n to \mathbb{R}^n , so differentiability is defined. Each map ψ_{α} is a *coordinate system* (as physicists say; mathematicians call it a "chart").

Convention. For a manifold M, we require that the cover $\{O_{\alpha}\}$ and the set of coordinate systems $\{\psi_{\alpha}\}$ are maximal. That is, all coordinate systems compatible with parts 2 and 3 of the definition of a manifold are included. This avoids the complication of defining new manifolds from given manifolds by simply adding or deleting a coordinate system.

Note. We say $f : \mathbb{R}^n \to \mathbb{R}^n$ is C^{∞} if all partials (pure and mixed) of all orders exist and are continuous.

Definition. The maps ψ_{α} above which associate elements of \mathbb{R}^n with points of the manifold are called *charts* or *coordinate systems*.

Note. The function $\psi_{\beta} \circ \psi_{\alpha}^{-1}$ maps \mathbb{R}^n to \mathbb{R}^n and $\psi_{\alpha}[O_{\alpha} \cap O_{\beta}] \subset U_{\alpha}$ and $\psi_{\beta}[O_{\alpha} \cap O_{\beta}] \subset U_{\beta}$. We have:

Figure 2.1 from Wald, page 13.

Example. \mathbb{R}^n is an *n*-manifold (trivially).

Example. (Problem 2.1(a)) The 2-sphere

$$S^{2} = \left\{ (x^{1}, x^{2}, x^{3}) \in \mathbb{R} \mid (x^{1})^{2} + (x^{2})^{2} + (x^{3})^{2} = 1 \right\}$$

is a 2-manifold. First, we cannot simply map S^2 continuously onto \mathbb{R}^2 since S^2 is a compact subset of \mathbb{R}^3 and \mathbb{R}^2 is not a compact set of \mathbb{R}^3 (and continuous functions map compact sets onto compact sets). Therefore we have to cover S^2 with sets $\{O_\alpha\}$ and map these sets into \mathbb{R}^2 . So define the six hemispherical open sets O_i^{\pm} for i = 1, 2, 3:

$$O_I^{\pm} = \left\{ (x^1, x^2, x^3) \in S^2 \mid \pm x^i > 0 \right\}$$

these correspond to the top half, bottom half, right half, left half, front half, and bottom half of the sphere). Then Property 1 of the definition of manifold is satisfied: $\bigcup_{\alpha} O_{\alpha} = S^{2} = M, \text{ Next, take } U_{\alpha} = D = \{(x, y) \in \mathbb{R}^{2} | x^{2} + y^{2} < 1\} \text{ for } \alpha = 1, 2, \ldots, 6.$ We define the six ψ_{α} by projecting the hemisphere onto D:

Each of the six (open) hemispheres are mapped onto the (open) unit disk.

That is, $f_1^{\pm}(x^1, x^2, x^3) = (x^2, x^3)$, $f_2^{\pm}(x^1, x^2, x^3) = (x^1, x^3)$, and $f_3^{\pm}(x^1, x^2, x^3) = (x^1, x^2)$. Then the coordinate system $\{\psi_{\alpha}\} = \{f_i^{\pm}\}$ are one-to-one and onto maps mapping the O_{α} 's onto open set D. Hence property 2 of the definition of manifold is satisfied. (The following is Problem 2.1a.) Now $(f_j^{\pm})^{-1}$ maps D onto one of the six hemispheres. So $(f_i^{\pm}) \circ (f_j^{\pm})^{-1}$ maps D onto a (not necessarily nonempty) subset of D. In particular, $(f_i^+) \circ (f_i^-)^{-1}$ and $(f_i^-) \circ (f_i^+)^{-1}$, for i = 1, 2, 3 (so this covers 6 cases) are nowhere defined and Property 3 does not apply. (For example, $(f_3^+)^{-1}$ maps D onto the upper (open) hemisphere of S^2 but f_3^- is only defined on the lower [open] hemisphere of S^2 so $(f_3^-) \circ (f_3^+)^{-1}$ has an empty domain.) Next, if $i \neq j$ then $(f_i^{\pm}) \circ (f_j^{\pm})^{-1}$ maps D onto one of the following (depending on i and j):

From Differential Geometry of Manifolds, by Stephen Lovett (A. K. Peters, 2010).

Without loss of generality, consider $(f_2^+) \circ (f_1^+)^{-1}$. Then $(f_1^+)^{-1}$ maps D onto the "front" of S^2 and f_2^+ then maps the intersection of the "front" and "right" of S^2 onto the right side of D.

So

$$(x,y) \xrightarrow{(f_1^+)^{-1}} (\sqrt{1-x^2-y^2}, x, y) \xrightarrow{f_2^+} (\sqrt{1-x^2-y^2}, y).$$

For $(x, y) \in D$, this composition is C^{∞} (notice that the + need not correspond to the +, and so this covers $4 \times 6 = 24$ cases). This leaves 6 of the $6 \times 6 = 36$ cases to consider, namely $(f_i^+) \circ (f_i^+)^{-1}$ and $(f_i^-) \circ (f_i^-)^{-1}$ for i = 1, 2, 3. In each of these 6 cases, the composition is the identity function from D to D and so is C^{∞} . Therefore, Property 3 of the definition of manifold is satisfied and hence S^2 is a manifold. \Box

Note. Analogous to the previous example, we can show that the *n*-sphere S^n is an *n*-manifold.

Definition. Given two manifolds M and M' of dimensions n and n', respectively, we define the *product manifold* $M \times M'$. We take as the points of $M \times M'$ the collection of all pairs (p, p') where $p \in M$ and $p' \in M'$. For the collection of subsets of $M \times M'$ we take the collection of all $\{O_{\alpha\beta} = O_{\alpha} \times O_{\beta}\}$ where O_{α} is a subset of M and O_{β} is a subset of M' (where O_{α} and O_{β} are as described in the definition of manifold). Finally, we define the coordinate system $\{\varphi_{\alpha\beta}\}$ where $\varphi_{\alpha\beta}: O_{\alpha\beta} \to U_{\alpha\beta} = U_{\alpha} \times U_{\beta} \subset \mathbb{R}^{n+n'}$ as $\psi_{\alpha\beta}(p, p') = (\psi_{\alpha}(p), \psi'_{\beta}(p'))$ where $p \in O_{\alpha}$, $p' \in O_{\beta}, \psi_{\alpha}: O_{\alpha} \to U_{\alpha}$, and $\psi'_{\beta}: O'_{\beta} \to U'_{\beta}$.

Note. Certainly $\{O_{\alpha\beta}\}$ above covers $M \times M'$. Also, for all $\alpha\beta$, the function $\psi_{\alpha\beta}$ maps $O_{\alpha\beta}$ one-to-one and onto an open set of $\mathbb{R}^{n+n'}$ (namely, $U_{\alpha\beta} = U_{\alpha} \times U'_{\beta}$). **Note.** We now can define differentiability of a function from one manifold M to another M'. We do so by using the charts of the manifolds. Let M and M' have chart maps $\{\psi_{\alpha}\}$ and $\{\psi'_{\beta}\}$, respectively, and let $f: M \to M'$. Then we have

$$\mathbb{R}^n \xrightarrow{\psi_{\alpha}^{-1}} M \xrightarrow{f} M' \xrightarrow{\psi_{\beta}'} \mathbb{R}^{n'},$$

and $\psi'_{\beta} \circ f \circ \psi^{-1}_{\alpha} : \mathbb{R}^n \to \mathbb{R}^{n'}$. So we use this mapping to define differentiability of f.

Definition. Let M and M' be manifolds with chart maps $\{\psi_{\alpha}\}$ and $\{\psi'_{\beta}\}$, respectively. We have $f: M \to M'$ is C^{∞} if for each α and β the map $\psi'_{\beta} \circ f \circ \psi_{\alpha}^{-1}$ taking $U_{\alpha} \subset \mathbb{R}^{n}$ into $U'_{\beta} \subset \mathbb{R}^{n'}$ is C^{∞} . If $f: M \to M'$ is C^{∞} , one to one, onto and has a C^{∞} inverse, then f is a *diffeomorphism* and M and M' are said to be *diffeomorphic*.

Note. Diffeomorphic manifolds have identical manifold structure.

Note. These notes are based in part on the fall 2011 Honors in Discipline project of Jessie Deering-Jamieson titled "What is a Manifold?"

Revised: 6/16/2018