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Chapter 2: Manifolds and

Tensor Fields

2.1. Manifolds

Note. An event is a point in spacetime. In prerelativity physics and in special
relativity, the space of all events is R*. In general relativity, we will keep the idea
that spacetime is locally “like” R*, but allow spacetime to have geometric properties
different from R* (that is, we do not require spacetime to be flat). This is analogous

to the fact that the Earth is locally like R2, but is globally different from R2.

Note. When making an analogy with the surface of the Earth, we take advantage
of the fact that a sphere is embedded in 3-space (an extrinsic property). When
considering all of spacetime, it would not make sense to think of how it is embedded
in a higher dimensional space (for this would imply something “outside” of the
universe, and such things are beyond science — if not beyond meaning!). We
must therefore study spacetime from within (that is, we can only study intrinsic
properties of spacetime). For such a study, we need to develop the abstract idea of

an n-manifold.
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Definition. Let z = (z%,22,...,2") and y = (y',%%...,y") be points in R".

Define the (Euclidean) distance between x and y as

" 1/2
[z —y| = [Z(:U“ — y“)2] :

p=1

The open ball in R™ of center y and radius r is
{reR"||x—y|l<r}.

An open set in R" is any set which can be expressed as an arbitrary union of open

balls.

Note. In fact, an open set in R" can be expressed as a countable collection of open

balls. This is called the Lindelof Property of R".

Definition. A function ¢ : X — Y is one-to-one if for distinct 2!, 22 € X we have
o(zt) # (x?). (If a function ¢ is one-to-one, then we can define its inverse ¢=1.)
The function ¢ is onto if for each y € Y, there exists x € X such that ¢(x) = y.
If p: X — R" (where X is any set) then ¢ is C™ is ¢ is infinitely differentiable.
(Notice that ¢ is a vector valued function and should be treated as an n-tuple of
scalar valued functions ¢ = (!, ¢?,...,"). Saying ¢ is infinitely differentiable is
equivalent to saying that (" is infinitely differentiable for each u. It does not make
sense to talk about the differentiability of a function between arbitrary sets — we

need more structure than that.)
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Note. In the opinion of your humble instructor, a manifold is best thought of
in terms of paper mache. As opposed to taking small pieces of paper (which
represent little open sets from a 2-dimensional vector space) and soaking them in
water and glue (allowing us to bend and warp the pieces; that is, to continuously
transform them), we consider small pieces of n-dimensional space which are mapped
continuously to open subsets of the manifold. Instead of pasting the pieces of paper
onto a wire frame and overlapping them, we require that the continuous mappings
compose to give a certain level of differentiability. More precisely, we have the

following.

Definition. An n-dimensional, C*, real manifold is a set of M points together

with a collection {O,} of subsets of M such that
1. | JO. =M.

2. For each «, there is a one-to-one and onto map v, : O, — U, where U, is an

open subset of R".

3. For any two O,, O3 C M with O, (O # 0. We have the sets ¢, [0, () Os] C R"
and ¢3(0, () Os] C R™ open and the function g o ¢! is C*,

Notice that 5 0 ¢! maps R" to R", so differentiability is defined. Each map v,

is a coordinate system (as physicists say; mathematicians call it a “chart”).

Convention. For a manifold M, we require that the cover {O,} and the set of
coordinate systems {1} are maximal. That is, all coordinate systems compatible
with parts 2 and 3 of the definition of a manifold are included. This avoids the
complication of defining new manifolds from given manifolds by simply adding or

deleting a coordinate system.
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Note. We say f : R" — R" is C' if all partials (pure and mixed) of all orders

exist and are continuous.

Definition. The maps v, above which associate elements of R" with points of the

manifold are called charts or coordinate systems.

Note. The function ¢z01, ! maps R" to R" and 1, [0, () Os] C Uy, and ¥5[0, () Op] C
Us. We have:

RI'I

Figure 2.1 from Wald, page 13.

Example. R” is an n-manifold (trivially).
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Example. (Problem 2.1(a)) The 2-sphere
S* ={(a",2%,2%) e R | (2')” + (2°)* + (2%)* = 1}

is a 2-manifold. First, we cannot simply map S? continuously onto R? since S? is a
compact subset of R? and R? is not a compact set of R® (and continuous functions
map compact sets onto compact sets). Therefore we have to cover S? with sets
{O,} and map these sets into R?. So define the six hemispherical open sets O;" for
i=1,2,3:
Or = {(z",2%,2°) € $* | £2' > 0}

these correspond to the top half, bottom half, right half, left half, front half, and
bottom half of the sphere). Then Property 1 of the definition of manifold is satisfied:
UOQ = S% = M, Next, take U, = D = {(z,y) e R*|2° +¢y* < 1} for a =

1,2,...,6. We define the six v, by projecting the hemisphere onto D:

disk D

A

hemisphere

Each of the six (open) hemispheres are mapped onto the (open) unit disk.
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That is, fi~(a', 2% 2%) = (22,2%), fi (2", 2%, 2%) = (2", 2%), and f5 (2!, 22, 2%) =
(z',2%). Then the coordinate system {1,} = {f"} are one-to-one and onto maps
mapping the O,’s onto open set D. Hence property 2 of the definition of manifold
is satisfied. (The following is Problem 2.1a.) Now (ff)_1 maps D onto one of
the six hemispheres. So (f°) o ( fji)_1 maps D onto a (not necessarily nonempty)
subset of D. In particular, (f;") o (f7)~" and (f;) o (f;")7!, for i = 1,2,3 (so this
covers 6 cases) are nowhere defined and Property 3 does not apply. (For example,
(f37)~! maps D onto the upper (open) hemisphere of S? but f; is only defined on
the lower [open] hemisphere of S? so (f; ) o (f57)~! has an empty domain.) Next, if
i # j then (f)o (ff)_1 maps D onto one of the following (depending on i and 7):

From Differential Geometry of Manifolds, by Stephen Lovett (A. K. Peters, 2010).

Without loss of generality, consider (f,) o (f;")~!. Then (f;")~! maps D onto the
“front” of S? and f,” then maps the intersection of the “front” and “right” of S?

onto the right side of D.
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So
() fy
(z,y) — (V1—-22—y%zy)— (V1-22—9%y).

For (x,y) € D, this composition is C'* (notice that the + need not correspond
to the +, and so this covers 4 x 6 = 24 cases). This leaves 6 of the 6 x 6 = 36
cases to consider, namely (f;") o (f;F)™ and (f;)o (f;)~! for i = 1,2,3. In each
of these 6 cases, the composition is the identity function from D to D and so is
C>. Therefore, Property 3 of the definition of manifold is satisfied and hence S? is

a manifold. [

Note. Analogous to the previous example, we can show that the n-sphere S is

an n-manifold.

Definition. Given two manifolds M and M’ of dimensions n and n’, respectively,
we define the product manifold M x M’'. We take as the points of M x M’ the
collection of all pairs (p,p’) where p € M and p’ € M'. For the collection of
subsets of M x M’ we take the collection of all {O.3 = O, x O} where O, is
a subset of M and Op is a subset of M’ (where O, and Og are as described in
the definition of manifold). Finally, we define the coordinate system {y,3} where
Gap : Oap — Usp = Uy x Us C R as 9h5(p, p') = (Ya(p), ¥5(p')) where p € O,,
P € O0p, Yo : Of — Uy, and ¢ : O — Up.

Note. Certainly {O,3} above covers M x M'. Also, for all af, the function 1,3

maps O, one-to-one and onto an open set of R™™ (namely, U,5 = U, X Up)-
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Note. We now can define differentiability of a function from one manifold M to
another M’. We do so by using the charts of the manifolds. Let M and M’ have
chart maps {9, } and {1}, respectively, and let f : M — M'. Then we have

1 / ,
R Y2 pr L R

and Wﬁ o foy ' :R" — R". So we use this mapping to define differentiability of
f.

Definition. Let M and M’ be manifolds with chart maps {¢),} and {¢};}, respec-
tively. We have f : M — M’ is C* if for each a and 3 the map ¢} o f o Pt
taking U, C R" into Uj C R" is C®. If f: M — M’ is C*™, one to one, onto
and has a C™ inverse, then f is a diffeomorphism and M and M’ are said to be

diffeomorphic.
Note. Diffeomorphic manifolds have identical manifold structure.

Note. These notes are based in part on the fall 2011 Honors in Discipline project

of Jessie Deering-Jamieson titled “What is a Manifold?”
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