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Chapter 2: Manifolds and

Tensor Fields

2.1. Manifolds

Note. An event is a point in spacetime. In prerelativity physics and in special

relativity, the space of all events is R
4. In general relativity, we will keep the idea

that spacetime is locally “like” R
4, but allow spacetime to have geometric properties

different from R
4 (that is, we do not require spacetime to be flat). This is analogous

to the fact that the Earth is locally like R
2, but is globally different from R

2.

Note. When making an analogy with the surface of the Earth, we take advantage

of the fact that a sphere is embedded in 3-space (an extrinsic property). When

considering all of spacetime, it would not make sense to think of how it is embedded

in a higher dimensional space (for this would imply something “outside” of the

universe, and such things are beyond science — if not beyond meaning!). We

must therefore study spacetime from within (that is, we can only study intrinsic

properties of spacetime). For such a study, we need to develop the abstract idea of

an n-manifold.
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Definition. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be points in R
n.

Define the (Euclidean) distance between x and y as

|x− y| =

[

n
∑

µ=1

(xµ − yµ)2

]1/2

.

The open ball in R
n of center y and radius r is

{x ∈ R
n | |x− y| < r} .

An open set in R
n is any set which can be expressed as an arbitrary union of open

balls.

Note. In fact, an open set in R
n can be expressed as a countable collection of open

balls. This is called the Lindelöf Property of R
n.

Definition. A function ϕ : X → Y is one-to-one if for distinct x1, x2 ∈ X we have

ϕ(x1) 6= ϕ(x2). (If a function ϕ is one-to-one, then we can define its inverse ϕ−1.)

The function ϕ is onto if for each y ∈ Y , there exists x ∈ X such that ϕ(x) = y.

If ϕ : X → R
n (where X is any set) then ϕ is C∞ is ϕ is infinitely differentiable.

(Notice that ϕ is a vector valued function and should be treated as an n-tuple of

scalar valued functions ϕ = (ϕ1, ϕ2, . . . , ϕn). Saying ϕ is infinitely differentiable is

equivalent to saying that ϕµ is infinitely differentiable for each µ. It does not make

sense to talk about the differentiability of a function between arbitrary sets — we

need more structure than that.)
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Note. In the opinion of your humble instructor, a manifold is best thought of

in terms of paper mache. As opposed to taking small pieces of paper (which

represent little open sets from a 2-dimensional vector space) and soaking them in

water and glue (allowing us to bend and warp the pieces; that is, to continuously

transform them), we consider small pieces of n-dimensional space which are mapped

continuously to open subsets of the manifold. Instead of pasting the pieces of paper

onto a wire frame and overlapping them, we require that the continuous mappings

compose to give a certain level of differentiability. More precisely, we have the

following.

Definition. An n-dimensional, C∞, real manifold is a set of M points together

with a collection {Oα} of subsets of M such that

1.
⋃

α

Oα = M .

2. For each α, there is a one-to-one and onto map ψα : Oα → Uα where Uα is an

open subset of R
n.

3. For any two Oα, Oβ ⊂ M with Oα

⋂

Oβ 6= ∅. We have the sets ψα[Oα

⋂

Oβ] ⊂ R
n

and ψβ[Oα

⋂

Oβ] ⊂ R
n open and the function ψβ ◦ ψ−1

α is C∞.

Notice that ψβ ◦ ψ
−1
α maps R

n to R
n, so differentiability is defined. Each map ψα

is a coordinate system (as physicists say; mathematicians call it a “chart”).

Convention. For a manifold M , we require that the cover {Oα} and the set of

coordinate systems {ψα} are maximal. That is, all coordinate systems compatible

with parts 2 and 3 of the definition of a manifold are included. This avoids the

complication of defining new manifolds from given manifolds by simply adding or

deleting a coordinate system.
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Note. We say f : R
n → R

n is C∞ if all partials (pure and mixed) of all orders

exist and are continuous.

Definition. The maps ψα above which associate elements of R
n with points of the

manifold are called charts or coordinate systems.

Note. The function ψβ◦ψ
−1
α maps R

n to R
n and ψα[Oα

⋂

Oβ] ⊂ Uα and ψβ[Oα

⋂

Oβ] ⊂

Uβ. We have:

Figure 2.1 from Wald, page 13.

Example. R
n is an n-manifold (trivially).
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Example. (Problem 2.1(a)) The 2-sphere

S2 =
{

(x1, x2, x3) ∈ R | (x1)2 + (x2)2 + (x3)2 = 1
}

is a 2-manifold. First, we cannot simply map S2 continuously onto R
2 since S2 is a

compact subset of R
3 and R

2 is not a compact set of R
3 (and continuous functions

map compact sets onto compact sets). Therefore we have to cover S2 with sets

{Oα} and map these sets into R
2. So define the six hemispherical open sets O±

i for

i = 1, 2, 3:

O±
I =

{

(x1, x2, x3) ∈ S2 | ±xi > 0
}

these correspond to the top half, bottom half, right half, left half, front half, and

bottom half of the sphere). Then Property 1 of the definition of manifold is satisfied:
⋃

α

Oα = S2 = M, Next, take Uα = D =
{

(x, y) ∈ R
2 | x2 + y2 < 1

}

for α =

1, 2, . . . , 6. We define the six ψα by projecting the hemisphere onto D:

Each of the six (open) hemispheres are mapped onto the (open) unit disk.
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That is, f±
1

(x1, x2, x3) = (x2, x3), f±
2

(x1, x2, x3) = (x1, x3), and f±
3

(x1, x2, x3) =

(x1, x2). Then the coordinate system {ψα} = {f±i } are one-to-one and onto maps

mapping the Oα’s onto open set D. Hence property 2 of the definition of manifold

is satisfied. (The following is Problem 2.1a.) Now (f±j )−1 maps D onto one of

the six hemispheres. So (f±i ) ◦ (f±j )−1 maps D onto a (not necessarily nonempty)

subset of D. In particular, (f+

i ) ◦ (f−i )−1 and (f−i ) ◦ (f+

i )−1, for i = 1, 2, 3 (so this

covers 6 cases) are nowhere defined and Property 3 does not apply. (For example,

(f+

3
)−1 maps D onto the upper (open) hemisphere of S2 but f−

3
is only defined on

the lower [open] hemisphere of S2 so (f−
3

) ◦ (f+

3
)−1 has an empty domain.) Next, if

i 6= j then (f±i ) ◦ (f±j )−1 maps D onto one of the following (depending on i and j):

From Differential Geometry of Manifolds, by Stephen Lovett (A. K. Peters, 2010).

Without loss of generality, consider (f+

2
) ◦ (f+

1
)−1. Then (f+

1
)−1 maps D onto the

“front” of S2 and f+

2
then maps the intersection of the “front” and “right” of S2

onto the right side of D.
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So

(x, y)

(f+

1
)−1

−→ (
√

1 − x2 − y2, x, y)

f+

2

−→ (
√

1 − x2 − y2, y).

For (x, y) ∈ D, this composition is C∞ (notice that the + need not correspond

to the +, and so this covers 4 × 6 = 24 cases). This leaves 6 of the 6 × 6 = 36

cases to consider, namely (f+

i ) ◦ (f+

i )−1 and (f−i ) ◦ (f−i )−1 for i = 1, 2, 3. In each

of these 6 cases, the composition is the identity function from D to D and so is

C∞. Therefore, Property 3 of the definition of manifold is satisfied and hence S2 is

a manifold. �

Note. Analogous to the previous example, we can show that the n-sphere Sn is

an n-manifold.

Definition. Given two manifolds M and M ′ of dimensions n and n′, respectively,

we define the product manifold M ×M ′. We take as the points of M ×M ′ the

collection of all pairs (p, p′) where p ∈ M and p′ ∈ M ′. For the collection of

subsets of M × M ′ we take the collection of all {Oαβ = Oα × Oβ} where Oα is

a subset of M and Oβ is a subset of M ′ (where Oα and Oβ are as described in

the definition of manifold). Finally, we define the coordinate system {ϕαβ} where

ϕαβ : Oαβ → Uαβ = Uα × Uβ ⊂ R
n+n′

as ψαβ(p, p
′) = (ψα(p), ψ

′
β(p

′)) where p ∈ Oα,

p′ ∈ Oβ, ψα : Oα → Uα, and ψ′
β : O′

β → U ′
β.

Note. Certainly {Oαβ} above covers M ×M ′. Also, for all αβ, the function ψαβ

maps Oαβ one-to-one and onto an open set of R
n+n′

(namely, Uαβ = Uα × U ′
β).
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Note. We now can define differentiability of a function from one manifold M to

another M ′. We do so by using the charts of the manifolds. Let M and M ′ have

chart maps {ψα} and {ψ′
β}, respectively, and let f : M →M ′. Then we have

R
n ψ−1

α−→ M
f

−→M ′
ψ′

β

−→ R
n′

,

and ψ′
β ◦ f ◦ ψ−1

α : R
n → R

n′

. So we use this mapping to define differentiability of

f .

Definition. Let M and M ′ be manifolds with chart maps {ψα} and {ψ′
β}, respec-

tively. We have f : M → M ′ is C∞ if for each α and β the map ψ′
β ◦ f ◦ ψ−1

α

taking Uα ⊂ R
n into U ′

β ⊂ R
n′

is C∞. If f : M → M ′ is C∞, one to one, onto

and has a C∞ inverse, then f is a diffeomorphism and M and M ′ are said to be

diffeomorphic.

Note. Diffeomorphic manifolds have identical manifold structure.

Note. These notes are based in part on the fall 2011 Honors in Discipline project

of Jessie Deering-Jamieson titled “What is a Manifold?”
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