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2.2. Vectors (Partial)

Note. In this section, we introduce a way to discuss vectors tangent to a manifold

intrinsically (that is, without an appeal to a “hyperspace” in which the manifold

is embedded—curvature will have to be dealt with similarly).

Note. In Calculus III (MATH 2110), we used a vector (a unit vector) to de-

fine a directional derivative in R
2 and R

3. See Section 14.5 of my Calculus III

notes (http://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s5.pdf). For

(v1, v2, . . . , vn) ∈ R
n we have the directional derivative operator on f(x1, x2, . . . , xn)

defined as

n
∑

µ=1

vn
∂

∂xµ
[f ] (and conversely, any directional derivative corresponds to

a vector). Wald states (page 15) that “Directional derivatives are characterized by

their linearity and ‘Leibniz’s Rule’ [a version of the Product Rule] behavior when

acting on functions.” This motivates the following definition.

Definition. For manifold M , let F be the collection of all C∞ function from M

into R. A tangent vector v at a point p ∈ M is a function v : F → R which satisfies:

(1) Linearity: v(af + bg) = av(f) + bv(g) for all f, g ∈ F and a, b ∈ R, and

(2) Leibniz Rule: v(fg) = f(p)v(g) + g(p)v(f).

Note. Notice that the only place the point p plays a role in the definition of a

tangent vector is in “Leibniz’s Rule.”
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Note. If h ∈ F is a constant function, say h(q) = c for all q ∈M , then at point p

by Leibniz’s Rule

v(h2) = v(h h) = h(p)v(h) + h(p)v(h) = 2cv(h)

and by linearity

v(h2) = v(ch) since h(q) = c

= cv(h).

So v(h2) = 2cv(h) = cv(h), and so v(h) = 0.

Definition. Let Vp denote the collection of all tangent vectors at p to manifold

M . For a, b ∈ R, define the linear combination av1 + bv2 ∈ Vp as

(av1 + bv2)(f) = av1(f) + bv2(f)

for all f ∈ F .

Note. Vp is “clearly” a vector space (a vector space of linear operators on F).

The following result confirms that if manifold M is of dimension n, then Vp is of

dimension n as well.

Theorem 2.2.1. Let M be an n-dimensional manifold. Let p ∈ M and let Vp

denote the tangent space at p. Then dim(Vp) = n.

Definition. The basis {Xµ}
n
µ=1 of Vp (the n-dimensional tangent space to M at p)

of Theorem 2.2.1 is a coordinate basis.
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Note. Notice that

Xµ(f) =
∂

∂xµ

[

f ◦ ψ−1
]

∣

∣

∣

∣

ψ(p)

where f : M → R and ψ : M → R
n so that f ◦ ψ−1 : R

n → R. Hence, basis vector

Xµ depends on the coordinate system ψ. We could use a different coordinate system

ψ′ to produce a different coordinate basis {X ′
ν} at point p. We then want to relate

the coordinate bases using the Chain Rule.

Note. By the Chain Rule of advanced Calculus (see, for example, my online Calcu-

lus 3 notes: http://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s4.pdf)

we have basis vector Xµ in terms of a different coordinate basis {X ′
ν} as

Xµ =
n

∑

ν=1

∂x′ ν

∂xµ

∣

∣

∣

∣

∣

ψ(p)

X ′
ν (2.2.9)

where x′ ν denotes the νth component of the map ψ′ ◦ ψ−1. Equation (2.2.9) is to

be established in Exercise 2.2.A.

Note/Definition. Since, as seen in the proof of Theorem 2.1.1, tangent vector v

is of the form v(f) =
(

∑n
µ=1 v

µXµ

)

(f), or as an operator simply as

v =
n

∑

µ=1

vµXµ. (2.2.8)

Combining this with (2.2.9) gives the tangent vector in terms of basis {X ′
ν} as

v =
n

∑

µ=1

vµXµ =
n

∑

µ=1

vµ





n
∑

ν=1

∂x′ ν

∂xµ

∣

∣

∣

∣

∣

ψ(p)

X ′
ν
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=

n
∑

ν=1





n
∑

ν=1

vµ
∂x′ ν

∂xµ

∣

∣

∣

∣

∣

ψ(p)



X ′
ν =

n
∑

ν=1

v′νX ′
ν.

So v′ν =
∑n

ν=1 v
µ ∂x′ ν

∂xµ

∣

∣

ψ(p)
as point p, or at an operator

v′ ν =

n
∑

ν=1

vµ
∂x′ ν

∂xµ
.

This is called the vector transformation law.

Definition. A smooth curve C on a manifold M is a C∞ map of R (or an interval

of R into M , C : R →M .

Note. For point p ∈ M on smooth curve C on M , we can associate a tangent

vector T ∈ Vp as follows. For f ∈ F (that is, for f a C∞ function mapping M

to R), set T (f) equal to the derivative of f ◦ C : R → R (here, C : R → M and

f : M → R) evaluated at p (that is, evaluated at t0 where C(t0) = p):

T (f) =
d

dt
[f ◦ C]

∣

∣

∣

∣

t=t0

.

Notice that T : F → R and T is linear. Also, for f, g ∈ F we have

T (fg) =
d

dt
[(fg) ◦ C]

∣

∣

∣

∣

t=t0

=
d

dt
[(f ◦ C)(g ◦ C)]

∣

∣

∣

∣

t=t0

=
d

dt
[f ◦ C]

∣

∣

∣

∣

t=t0

(g ◦ C)

∣

∣

∣

∣

∣

t=t0

+ (f ◦ C)

∣

∣

∣

∣

∣

t=t0

d

dt
[g ◦ C]

∣

∣

∣

∣

∣

∣

t0

= T (f)g(C(t0)) + f(C(t0))T (g) = T (f)g(p) + f(p)T (g)

so that T satisfies Leibniz Rule and hence by definition is a tangent vector to M

at point p.
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