2.2. Vectors (Partial)

Note. In this section, we introduce a way to discuss vectors tangent to a manifold intrinsically (that is, without an appeal to a "hyperspace" in which the manifold is embedded—curvature will have to be dealt with similarly).

Note. In Calculus III (MATH 2110), we used a vector (a unit vector) to define a directional derivative in \mathbb{R}^2 and \mathbb{R}^3 . See Section 14.5 of my Calculus III notes (http://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s5.pdf). For $(v^1, v^2, \dots, v^n) \in \mathbb{R}^n$ we have the directional derivative operator on $f(x^1, x^2, \dots, x^n)$ defined as $\sum_{\mu=1}^n v^n \frac{\partial}{\partial x^\mu} [f]$ (and conversely, any directional derivative corresponds to a vector). Wald states (page 15) that "Directional derivatives are characterized by their linearity and 'Leibniz's Rule' [a version of the Product Rule] behavior when acting on functions." This motivates the following definition.

Definition. For manifold M, let \mathcal{F} be the collection of all C^{∞} function from M into \mathbb{R} . A tangent vector v at a point $p \in M$ is a function $v : \mathcal{F} \to \mathbb{R}$ which satisfies:

- (1) Linearity: v(af + bg) = av(f) + bv(g) for all $f, g \in \mathcal{F}$ and $a, b \in \mathbb{R}$, and
- (2) Leibniz Rule: v(fg) = f(p)v(g) + g(p)v(f).

Note. Notice that the only place the point p plays a role in the definition of a tangent vector is in "Leibniz's Rule."

Note. If $h \in \mathcal{F}$ is a constant function, say h(q) = c for all $q \in M$, then at point p by Leibniz's Rule

$$v(h^2) = v(h h) = h(p)v(h) + h(p)v(h) = 2cv(h)$$

and by linearity

$$v(h^2) = v(ch)$$
 since $h(q) = c$
= $cv(h)$.

So $v(h^2) = 2cv(h) = cv(h)$, and so v(h) = 0.

Definition. Let V_p denote the collection of all tangent vectors at p to manifold M. For $a, b \in \mathbb{R}$, define the linear combination $av_1 + bv_2 \in V_p$ as

$$(av_1 + bv_2)(f) = av_1(f) + bv_2(f)$$

for all $f \in \mathcal{F}$.

Note. V_p is "clearly" a vector space (a vector space of linear operators on \mathcal{F}). The following result confirms that if manifold M is of dimension n, then V_p is of dimension n as well.

Theorem 2.2.1. Let M be an n-dimensional manifold. Let $p \in M$ and let V_p denote the tangent space at p. Then $\dim(V_p) = n$.

Definition. The basis $\{X_{\mu}\}_{\mu=1}^{n}$ of V_{p} (the *n*-dimensional tangent space to M at p) of Theorem 2.2.1 is a *coordinate basis*.

Note. Notice that

$$X_{\mu}(f) = \frac{\partial}{\partial x^{\mu}} \left[f \circ \psi^{-1} \right] \Big|_{\psi(p)}$$

where $f: M \to \mathbb{R}$ and $\psi: M \to \mathbb{R}^n$ so that $f \circ \psi^{-1}: \mathbb{R}^n \to \mathbb{R}$. Hence, basis vector X_{μ} depends on the coordinate system ψ . We could use a different coordinate system ψ' to produce a different coordinate basis $\{X'_{\nu}\}$ at point p. We then want to relate the coordinate bases using the Chain Rule.

Note. By the Chain Rule of advanced Calculus (see, for example, my online Calculus 3 notes: http://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s4.pdf) we have basis vector X_{μ} in terms of a different coordinate basis $\{X'_{\nu}\}$ as

$$X_{\mu} = \sum_{\nu=1}^{n} \frac{\partial x^{\prime \nu}}{\partial x^{\mu}} \bigg|_{\psi(p)} X_{\nu}^{\prime} \tag{2.2.9}$$

where x'^{ν} denotes the ν th component of the map $\psi' \circ \psi^{-1}$. Equation (2.2.9) is to be established in Exercise 2.2.A.

Note/Definition. Since, as seen in the proof of Theorem 2.1.1, tangent vector v is of the form $v(f) = \left(\sum_{\mu=1}^{n} v^{\mu} X_{\mu}\right)(f)$, or as an operator simply as

$$v = \sum_{\mu=1}^{n} v^{\mu} X_{\mu}.$$
 (2.2.8)

Combining this with (2.2.9) gives the tangent vector in terms of basis $\{X'_{\nu}\}$ as

$$v = \sum_{\mu=1}^{n} v^{\mu} X_{\mu} = \sum_{\mu=1}^{n} v^{\mu} \left(\sum_{\nu=1}^{n} \frac{\partial x'^{\nu}}{\partial x^{\mu}} \Big|_{\psi(p)} X'_{\nu} \right)$$

$$= \sum_{\nu=1}^{n} \left(\sum_{\nu=1}^{n} v^{\mu} \frac{\partial x'^{\nu}}{\partial x^{\mu}} \bigg|_{\psi(p)} \right) X'_{\nu} = \sum_{\nu=1}^{n} v'^{\nu} X'_{\nu}.$$

So $v'^{\nu} = \sum_{\nu=1}^{n} v^{\mu} \frac{\partial x'^{\nu}}{\partial x^{\mu}} \Big|_{\psi(p)}$ as point p, or at an operator

$$v^{\prime\nu} = \sum_{\nu=1}^{n} v^{\mu} \frac{\partial x^{\prime\nu}}{\partial x^{\mu}}.$$

This is called the *vector transformation law*.

Definition. A smooth curve C on a manifold M is a C^{∞} map of \mathbb{R} (or an interval of \mathbb{R} into $M, C : \mathbb{R} \to M$.

Note. For point $p \in M$ on smooth curve C on M, we can associate a tangent vector $T \in V_p$ as follows. For $f \in \mathcal{F}$ (that is, for f a C^{∞} function mapping M to \mathbb{R}), set T(f) equal to the derivative of $f \circ C : \mathbb{R} \to \mathbb{R}$ (here, $C : \mathbb{R} \to M$ and $f : M \to \mathbb{R}$) evaluated at p (that is, evaluated at t_0 where $C(t_0) = p$):

$$T(f) = \frac{d}{dt}[f \circ C]\bigg|_{t=t_0}.$$

Notice that $T: \mathcal{F} \to \mathbb{R}$ and T is linear. Also, for $f, g \in \mathcal{F}$ we have

$$T(fg) = \frac{d}{dt}[(fg) \circ C] \Big|_{t=t_0} = \frac{d}{dt}[(f \circ C)(g \circ C)] \Big|_{t=t_0}$$

$$= \frac{d}{dt}[f \circ C] \Big|_{t=t_0} (g \circ C) \Big|_{t=t_0} + (f \circ C) \Big|_{t=t_0} \frac{d}{dt}[g \circ C] \Big|_{t_0}$$

$$= T(f)g(C(t_0)) + f(C(t_0))T(g) = T(f)g(p) + f(p)T(g)$$

so that T satisfies Leibniz Rule and hence by definition is a tangent vector to M at point p.

Revised: 4/24/2019