2.2. Vectors (Partial)

Note. In this section, we introduce a way to discuss vectors tangent to a manifold intrinsically (that is, without an appeal to a "hyperspace" in which the manifold is embedded-curvature will have to be dealt with similarly).

Note. In Calculus III (MATH 2110), we used a vector (a unit vector) to define a directional derivative in \mathbb{R}^{2} and \mathbb{R}^{3}. See Section 14.5 of my Calculus III notes (http://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s5.pdf). For $\left(v^{1}, v^{2}, \ldots, v^{n}\right) \in \mathbb{R}^{n}$ we have the directional derivative operator on $f\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ defined as $\sum_{\mu=1}^{n} v^{n} \frac{\partial}{\partial x^{\mu}}[f]$ (and conversely, any directional derivative corresponds to a vector). Wald states (page 15) that "Directional derivatives are characterized by their linearity and 'Leibniz's Rule' [a version of the Product Rule] behavior when acting on functions." This motivates the following definition.

Definition. For manifold M, let \mathcal{F} be the collection of all C^{∞} function from M into \mathbb{R}. A tangent vector v at a point $p \in M$ is a function $v: \mathcal{F} \rightarrow \mathbb{R}$ which satisfies:
(1) Linearity: $v(a f+b g)=a v(f)+b v(g)$ for all $f, g \in \mathcal{F}$ and $a, b \in \mathbb{R}$, and
(2) Leibniz Rule: $v(f g)=f(p) v(g)+g(p) v(f)$.

Note. Notice that the only place the point p plays a role in the definition of a tangent vector is in "Leibniz's Rule."

Note. If $h \in \mathcal{F}$ is a constant function, say $h(q)=c$ for all $q \in M$, then at point p by Leibniz's Rule

$$
v\left(h^{2}\right)=v(h h)=h(p) v(h)+h(p) v(h)=2 c v(h)
$$

and by linearity

$$
\begin{aligned}
v\left(h^{2}\right) & =v(c h) \text { since } h(q)=c \\
& =c v(h) .
\end{aligned}
$$

So $v\left(h^{2}\right)=2 c v(h)=c v(h)$, and so $v(h)=0$.

Definition. Let V_{p} denote the collection of all tangent vectors at p to manifold M. For $a, b \in \mathbb{R}$, define the linear combination $a v_{1}+b v_{2} \in V_{p}$ as

$$
\left(a v_{1}+b v_{2}\right)(f)=a v_{1}(f)+b v_{2}(f)
$$

for all $f \in \mathcal{F}$.

Note. V_{p} is "clearly" a vector space (a vector space of linear operators on \mathcal{F}). The following result confirms that if manifold M is of dimension n, then V_{p} is of dimension n as well.

Theorem 2.2.1. Let M be an n-dimensional manifold. Let $p \in M$ and let V_{p} denote the tangent space at p. Then $\operatorname{dim}\left(V_{p}\right)=n$.

Definition. The basis $\left\{X_{\mu}\right\}_{\mu=1}^{n}$ of V_{p} (the n-dimensional tangent space to M at p) of Theorem 2.2.1 is a coordinate basis.

Note. Notice that

$$
X_{\mu}(f)=\left.\frac{\partial}{\partial x^{\mu}}\left[f \circ \psi^{-1}\right]\right|_{\psi(p)}
$$

where $f: M \rightarrow \mathbb{R}$ and $\psi: M \rightarrow \mathbb{R}^{n}$ so that $f \circ \psi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Hence, basis vector X_{μ} depends on the coordinate system ψ. We could use a different coordinate system ψ^{\prime} to produce a different coordinate basis $\left\{X_{\nu}^{\prime}\right\}$ at point p. We then want to relate the coordinate bases using the Chain Rule.

Note. By the Chain Rule of advanced Calculus (see, for example, my online Calculus 3 notes: http://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s4.pdf) we have basis vector X_{μ} in terms of a different coordinate basis $\left\{X_{\nu}^{\prime}\right\}$ as

$$
\begin{equation*}
X_{\mu}=\left.\sum_{\nu=1}^{n} \frac{\partial x^{\prime \nu}}{\partial x^{\mu}}\right|_{\psi(p)} X_{\nu}^{\prime} \tag{2.2.9}
\end{equation*}
$$

where $x^{\prime \nu}$ denotes the ν th component of the map $\psi^{\prime} \circ \psi^{-1}$. Equation (2.2.9) is to be established in Exercise 2.2.A.

Note/Definition. Since, as seen in the proof of Theorem 2.1.1, tangent vector v is of the form $v(f)=\left(\sum_{\mu=1}^{n} v^{\mu} X_{\mu}\right)(f)$, or as an operator simply as

$$
\begin{equation*}
v=\sum_{\mu=1}^{n} v^{\mu} X_{\mu} \tag{2.2.8}
\end{equation*}
$$

Combining this with (2.2.9) gives the tangent vector in terms of basis $\left\{X_{\nu}^{\prime}\right\}$ as

$$
v=\sum_{\mu=1}^{n} v^{\mu} X_{\mu}=\sum_{\mu=1}^{n} v^{\mu}\left(\left.\sum_{\nu=1}^{n} \frac{\partial x^{\prime \nu}}{\partial x^{\mu}}\right|_{\psi(p)} X_{\nu}^{\prime}\right)
$$

$$
=\sum_{\nu=1}^{n}\left(\left.\sum_{\nu=1}^{n} v^{\mu} \frac{\partial x^{\prime \nu}}{\partial x^{\mu}}\right|_{\psi(p)}\right) X_{\nu}^{\prime}=\sum_{\nu=1}^{n} v^{\prime \nu} X_{\nu}^{\prime}
$$

So $v^{\prime \nu}=\left.\sum_{\nu=1}^{n} v^{\mu} \frac{\partial x^{\prime \nu}}{\partial x^{\mu}}\right|_{\psi(p)}$ as point p, or at an operator

$$
v^{\prime \nu}=\sum_{\nu=1}^{n} v^{\mu} \frac{\partial x^{\nu}}{\partial x^{\mu}}
$$

This is called the vector transformation law.

Definition. A smooth curve C on a manifold M is a C^{∞} map of \mathbb{R} (or an interval of \mathbb{R} into $M, C: \mathbb{R} \rightarrow M$.

Note. For point $p \in M$ on smooth curve C on M, we can associate a tangent vector $T \in V_{p}$ as follows. For $f \in \mathcal{F}$ (that is, for f a C^{∞} function mapping M to \mathbb{R}), set $T(f)$ equal to the derivative of $f \circ C: \mathbb{R} \rightarrow \mathbb{R}$ (here, $C: \mathbb{R} \rightarrow M$ and $f: M \rightarrow \mathbb{R}$) evaluated at p (that is, evaluated at t_{0} where $\left.C\left(t_{0}\right)=p\right)$:

$$
T(f)=\left.\frac{d}{d t}[f \circ C]\right|_{t=t_{0}}
$$

Notice that $T: \mathcal{F} \rightarrow \mathbb{R}$ and T is linear. Also, for $f, g \in \mathcal{F}$ we have

$$
\begin{aligned}
& T(f g)=\left.\frac{d}{d t}[(f g) \circ C]\right|_{t=t_{0}}=\left.\frac{d}{d t}[(f \circ C)(g \circ C)]\right|_{t=t_{0}} \\
= & \left.\left.\frac{d}{d t}[f \circ C]\right|_{t=t_{0}}(g \circ C)\right|_{t=t_{0}}+\left.\left.(f \circ C)\right|_{t=t_{0}} \frac{d}{d t}[g \circ C]\right|_{t_{0}} \\
= & T(f) g\left(C\left(t_{0}\right)\right)+f\left(C\left(t_{0}\right)\right) T(g)=T(f) g(p)+f(p) T(g)
\end{aligned}
$$

so that T satisfies Leibniz Rule and hence by definition is a tangent vector to M at point p.

