Complex Variables

Chapter 1. Complex Numbers

Section 1.2. Basic Algebraic Properties—Proofs of Theorems

Table of contents

Theorem 1.2.1

Theorem 1.2.1. For any $z_1, z_2, z_3 \in \mathbb{C}$ we have the following.

1. Commutivity of addition and multiplication:

 $z_1 + z_2 = z_2 + z_1$ and $z_1 z_2 = z_2 z_1$.

2. Associativity of addition and multiplication:

 $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ and $(z_1 z_2) z_3 = z_1(z_2 z_3)$.

3. Distribution of multiplication over addition:

$$z_1(z_2+z_3)=z_1z_2+z_1z_3.$$

- 4. There is an *additive identity* 0 = 0 + i0 such that 0 + z = z for all $z \in \mathbb{C}$. There is a *multiplicative identity* 1 = 1 + i0 such that z1 = z for all $z \in \mathbb{C}$. Also, z0 = 0 for all $z \in \mathbb{C}$.
- 5. For each $z \in \mathbb{C}$ there is $z' \in \mathbb{C}$ such that z' + z = 0. z' is the *additive inverse* of z (denoted -z). If $z \neq 0$, then there is $z'' \in \mathbb{C}$ such that z''z = 1. z'' is the *multiplicative inverse* of z (denoted z^{-1}).

Proof. We have abandoned the ordered pair notation, so let $z_k = x_k + iy_k$ for k = 1, 2, 3 and let z = x + iy, where $x_k, y_k, x, y \in \mathbb{R}$. **1. (Commutivity)** For addition, we have

$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2)$$

= $(x_1 + x_2) + i(y_1 + y_2)$ by the definition of + in \mathbb{C}
= $(x_2 + x_1) + i(y_2 + y_1)$ since + is commutative in \mathbb{R}
= $(x_2 + iy_2) + (x_1 + iy_1)$ by the definition of + in \mathbb{C}
= $z_2 + z_1$.

Proof (continued). For multiplication we have

$$z_1z_2 = (x_1 + iy_1)(x_2 + iy_2)$$

= $(x_1x_2 - y_1y_2) + i(y_1x_2 + x_1y_2)$ by the definition of \cdot in \mathbb{C}
= $(x_2x_1 - y_2y_1) + i(y_2x_1 + x_2y_1)$
since \cdot and $+$ are commutative in \mathbb{R}
= $(x_2 + iy_2)(x_1 + iy_1)$ by the definition of \cdot in \mathbb{C}
= z_2z_1 .

2. (Associativity) For addition we have

$$(z_1 + z_2) + z_3 = ((x_1 + iy_1) + (x_2 + iy_2)) + (x_3 + iy_3)$$

= $((x_1 + x_2) + i(y_1 + y_2)) + (x_3 + iy_3)$
by the definition of $+$ in \mathbb{C}

Proof (continued). For multiplication we have

$$z_1z_2 = (x_1 + iy_1)(x_2 + iy_2)$$

= $(x_1x_2 - y_1y_2) + i(y_1x_2 + x_1y_2)$ by the definition of \cdot in \mathbb{C}
= $(x_2x_1 - y_2y_1) + i(y_2x_1 + x_2y_1)$
since \cdot and $+$ are commutative in \mathbb{R}
= $(x_2 + iy_2)(x_1 + iy_1)$ by the definition of \cdot in \mathbb{C}
= z_2z_1 .

2. (Associativity) For addition we have

$$(z_1 + z_2) + z_3 = ((x_1 + iy_1) + (x_2 + iy_2)) + (x_3 + iy_3)$$

= $((x_1 + x_2) + i(y_1 + y_2)) + (x_3 + iy_3)$
by the definition of + in \mathbb{C}

$$(z_1 + z_2) + z_3 = ((x_1 + x_2) + x_3) + i((y_1 + y_2) + y_3)$$

by the definition of + in \mathbb{C}
$$= (x_1 + (x_2 + x_3)) + i(y_1 + (y_2 + y_3))$$

since + is associative in \mathbb{R}
$$= (x_1 + iy_1) + ((x_2 + x_3) + i(y_2 + y_3))$$

by the definition of + in \mathbb{C}
$$= z_1 + (z_2 + z_3)$$

For multiplication we have

$$(z_1 + z_2) + z_3 = ((x_1 + x_2) + x_3) + i((y_1 + y_2) + y_3)$$

by the definition of + in \mathbb{C}
$$= (x_1 + (x_2 + x_3)) + i(y_1 + (y_2 + y_3))$$

since + is associative in \mathbb{R}
$$= (x_1 + iy_1) + ((x_2 + x_3) + i(y_2 + y_3))$$

by the definition of + in \mathbb{C}
$$= z_1 + (z_2 + z_3)$$

For multiplication we have

$$(z_1z_2)z_3 = ((x_1 + iy_1)(x_2 + iy_2))(x_3 + iy_3)$$

= $((x_1x_2 - y_1y_2) + i(y_1x_2 + x_1y_2))(x_3 + iy_3)$
by the definition of \cdot in \mathbb{C}

$$(z_1z_2)z_3 = ((x_1x_2 - y_1y_2)x_3 - (y_1x_2 + x_1y_2)y_3) + i((y_1x_2 + x_1y_2)x_3 + (x_1x_2 - y_1y_2)y_3)$$

by the definition of \cdot in \mathbb{C}

$$= (x_1(x_2x_3 - y_2y_3) - y_1(y_2x_3 + x_2y_3)) + i(y_1(x_2x_3 - y_2y_3) + x_1(y_2x_3 + x_2y_3))$$

by distribution, commutivity, and associativity in $\ensuremath{\mathbb{R}}$

$$= (x_1 + iy_1)((x_2x_3 - y_2y_3) + i(y_2x_3 + x_2y_3))$$

by the definition of \cdot in \mathbb{C}

$$= (x_2 + iy_1)((x_2 + iy_2)(x_3 + iy_3))$$

by the definition of \cdot in \mathbb{C}

$$= z_1(z_2z_3).$$

- 3. (Distribution) For distribution we have
- $z_1(z_2 + z_3) = (z_1 + iy_1)((x_2 + iy_2) + (x_3 + iy_3))$ = $(x_1 + iy_1)((x_2 + x_3) + i(y_2 + y_3))$ by the definition of + in \mathbb{C}
 - $= (x_1(x_2 + x_3) y_1(y_2 + y_3)) + i(y_1(x_2 + x_3) + x_1(y_2 + y_3))$ by the definition of \cdot in \mathbb{C}
 - $= (x_1x_2 + x_1x_3 y_1y_2 y_1y_3) + i(y_1x_2 + y_1x_3 + x_1y_2 + x_1y_3)$ by distribution in \mathbb{R}
 - $= ((x_1x_2 y_1y_2) + i(y_1x_2 + x_1y_2)) + ((x_1x_3 y_1y_3) + i(y_1x_3 + x_1y_3))$ by the definition of + in \mathbb{C}
 - $= (x_1 + iy_1)(x_2 + iy_2) + (x_1 + iy_1)(x_3 + iy_3)$ by the definition of \cdot in \mathbb{C}
 - $= z_1z_2+z_1z_3.$

4. (Identities) We easily have

$$\begin{array}{rcl} 0+z &=& (0+i0)+(x+iy) \\ &=& (0+x)+i(0+y) \text{ by the definition of }+\text{ in }\mathbb{C} \\ &=& x+iy \text{ since } 0 \text{ is the additive identity in }\mathbb{R} \\ &=& z \end{array}$$

and

$$1z = (1+i0)(x+iy)$$

- = ((1)(x) (0)(y)) + i((0)(x) + (1)(y)) by the definition of \cdot in \mathbb{C}
- x + iy since 1 is the multiplicative identity in $\mathbb R$
- = Z.

(

4. (Identities) We easily have

$$0 + z = (0 + i0) + (x + iy)$$

= (0 + x) + i(0 + y) by the definition of + in \mathbb{C}
= x + iy since 0 is the additive identity in \mathbb{R}
= z

and

$$\begin{aligned} 1z &= (1+i0)(x+iy) \\ &= ((1)(x) - (0)(y)) + i((0)(x) + (1)(y)) \text{ by the definition of } \cdot \text{ in } \mathbb{C} \\ &= x+iy \text{ since } 1 \text{ is the multiplicative identity in } \mathbb{R} \end{aligned}$$

= z.

Also,

$$z0 = (x + iy)(0 + i0)$$

= $((x)(0) - (y)(0)) + i((y)(0) + (x)(0))$ by the definition of \cdot in \mathbb{C}
= $0 + i0$ since $r0 = 0$ for all $r \in \mathbb{R}$
= 0 .

5. (Inverses) For z = x + iy, we take z' = (-x) + i(-y) and then

$$z + z' = (x + iy) + ((-x) + i(-y))$$

= $(x + (-x)) + i(y + (-y))$ by the definition of $+$ in \mathbb{C}
= $0 + i0$ since $-x$ and $-y$ are the $+$ inverses of x and y ,
respectively, in \mathbb{R}

= 0.

Also,

$$z0 = (x + iy)(0 + i0)$$

= $((x)(0) - (y)(0)) + i((y)(0) + (x)(0))$ by the definition of \cdot in \mathbb{C}
= $0 + i0$ since $r0 = 0$ for all $r \in \mathbb{R}$
= 0 .

5. (Inverses) For z = x + iy, we take z' = (-x) + i(-y) and then

$$z + z' = (x + iy) + ((-x) + i(-y))$$

= $(x + (-x)) + i(y + (-y))$ by the definition of $+$ in \mathbb{C}
= $0 + i0$ since $-x$ and $-y$ are the $+$ inverses of x and y ,
respectively, in \mathbb{R}

= 0.

For $z = x + iy \neq 0$, take $z'' = x/(x^2 + y^2) + i(-y)/(x^2 + y^2)$ (see page 4 of the text for motivation). Then

$$zz'' = (x + iy)(x/(x^2 + y^2) + i(-y)/(x^2 + y^2))$$

= $((x)(x/(x^2 + y^2) - (y)((-y)/x^2 + y^2)))$
 $+i((y)(x/(x^2 + y^2)) + x((-y)/(x^2 + y^2)))$
by the definition of \cdot in \mathbb{C}

= 1 + i0 by the multiplicative and additive inverse properties in \mathbb{R} = 1.

Corollary 1.2.2

Corollary 1.2.2. For $z_1, z_2, z_3 \in \mathbb{C}$ if $z_1z_2 = 0$ then either $z_1 = 0$ or $z_2 = 0$. That is, \mathbb{C} has no "zero divisors."

Proof. Suppose one of z_1 or z_2 is nonzero. WLOG, say $z_1 \neq 0$. Then, by Theorem 1.2.1(5), there is a multiplicative inverse $z_1^{-1} \in \mathbb{C}$ such that $z_1 z_1^{-1} = 1$.

Corollary 1.2.2

Corollary 1.2.2. For $z_1, z_2, z_3 \in \mathbb{C}$ if $z_1z_2 = 0$ then either $z_1 = 0$ or $z_2 = 0$. That is, \mathbb{C} has no "zero divisors."

Proof. Suppose one of z_1 or z_2 is nonzero. WLOG, say $z_1 \neq 0$. Then, by Theorem 1.2.1(5), there is a multiplicative inverse $z_1^{-1} \in \mathbb{C}$ such that $z_1 z_1^{-1} = 1$. So

$$z_2 = z_2 1$$
 by Theorem 1.2.1(4) (\cdot identity)

$$= z_2(z_1z_1^{-1})$$

- $= (z_1 z_1^{-1}) z_2 = (z_1^{-1} z_1) z_2 \text{ by Theorem 1.2.1(1) (commutivity of } \cdot)$
- $= z_1^{-1}(z_1z_2)$ by Theorem 1.2.1(2) (associativity of \cdot)
- $= z_1^{-1}(0)$ by hypothesis
- = 0 by Theorem 1.2.1(4).

So if one of z_1, z_2 is nonzero, then the other is 0 and the result follows.

Corollary 1.2.2

Corollary 1.2.2. For $z_1, z_2, z_3 \in \mathbb{C}$ if $z_1z_2 = 0$ then either $z_1 = 0$ or $z_2 = 0$. That is, \mathbb{C} has no "zero divisors."

Proof. Suppose one of z_1 or z_2 is nonzero. WLOG, say $z_1 \neq 0$. Then, by Theorem 1.2.1(5), there is a multiplicative inverse $z_1^{-1} \in \mathbb{C}$ such that $z_1 z_1^{-1} = 1$. So

$$\begin{aligned} z_2 &= z_2 1 \text{ by Theorem 1.2.1(4) } (\cdot \text{ identity}) \\ &= z_2(z_1 z_1^{-1}) \\ &= (z_1 z_1^{-1}) z_2 = (z_1^{-1} z_1) z_2 \text{ by Theorem 1.2.1(1) (commutivity of } \cdot) \\ &= z_1^{-1}(z_1 z_2) \text{ by Theorem 1.2.1(2) (associativity of } \cdot) \\ &= z_1^{-1}(0) \text{ by hypothesis} \\ &= 0 \text{ by Theorem 1.2.1(4).} \end{aligned}$$

So if one of z_1, z_2 is nonzero, then the other is 0 and the result follows.