Complex Variables

Chapter 1. Complex Numbers Section 1.3. Further Properties—Proofs of Theorems

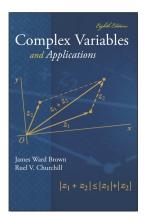


Table of contents

Lemma 1.3.1. For any $z_1, z_2, z_3 \in \mathbb{C}$, with $z_3 \neq 0$, we have

$$\frac{z_1}{z_3} + \frac{z_2}{z_3} = \frac{z_1 + z_2}{z_3}.$$

Proof. We have

$$\frac{z_1 + z_2}{z_3} = (z_1 + z_2)z_3^{-1} \text{ by the definition of division in } \mathbb{C}$$
$$= z_1 z_3^{-1} + z_2 z_3^{-1} \text{ by Theorem 1.2.1(3) (distribution)}$$
$$= \frac{z_1}{z_3} + \frac{z_2}{z_3} \text{ by the definition of division in } \mathbb{C}.$$

Lemma 1.3.1. For any $z_1, z_2, z_3 \in \mathbb{C}$, with $z_3 \neq 0$, we have

$$\frac{z_1}{z_3} + \frac{z_2}{z_3} = \frac{z_1 + z_2}{z_3}.$$

Proof. We have

$$\frac{z_1 + z_2}{z_3} = (z_1 + z_2)z_3^{-1} \text{ by the definition of division in } \mathbb{C}$$
$$= z_1 z_3^{-1} + z_2 z_3^{-1} \text{ by Theorem 1.2.1(3) (distribution)}$$
$$= \frac{z_1}{z_3} + \frac{z_2}{z_3} \text{ by the definition of division in } \mathbb{C}.$$

Lemma 1.3.2. If $z_1, z_2 \in \mathbb{C}$, with $z_1 \neq 0$, $z_2 \neq 0$, then

$$\left(\frac{1}{z_1}\right)\left(\frac{1}{z_2}\right) = \frac{1}{z_1z_2},$$

or equivalently, $z_1^{-1}z_2^{-1} = (z_1z_2)^{-1}$.

Proof. We have

 $(z_1z_2)(z_1^{-1}z_2^{-1}) = (z_1z_2)(z_2^{-1}z_1^{-1})$ by Theorem 1.2.1(1), commutativity $= ((z_1z_2)z_2^{-1})z_1^{-1}$ by Theorem 1.2.1(2), associativity $= (z_1(z_2z_2^{-1}))z_1^{-1}$ by Theorem 1.2.1(2), associativity $= (z_1(1))z_1^{-1}$ by the definition of multiplicative inverse $= z_1z_1^{-1}$ since 1 is the multiplicative identity = 1by the definition of multiplicative inverse.

Complex Variables

Since $(z_1z_2)(z_1^{-1}z_2^{-1}) = 1$ then $(z_1z_2)^{-1} = z_1^{-1}z_2^{-1}$.

Lemma 1.3.2. If $z_1, z_2 \in \mathbb{C}$, with $z_1 \neq 0$, $z_2 \neq 0$, then

$$\left(\frac{1}{z_1}\right)\left(\frac{1}{z_2}\right) = \frac{1}{z_1z_2},$$

or equivalently, $z_1^{-1}z_2^{-1} = (z_1z_2)^{-1}$.

Proof. We have

$$(z_1z_2)(z_1^{-1}z_2^{-1}) = (z_1z_2)(z_2^{-1}z_1^{-1})$$
 by Theorem 1.2.1(1), commutativity
 $= ((z_1z_2)z_2^{-1})z_1^{-1}$ by Theorem 1.2.1(2), associativity
 $= (z_1(z_2z_2^{-1}))z_1^{-1}$ by Theorem 1.2.1(2), associativity
 $= (z_1(1))z_1^{-1}$ by the definition of multiplicative inverse
 $= z_1z_1^{-1}$ since 1 is the multiplicative identity
 $= 1$ by the definition of multiplicative inverse.
Since $(z_1z_2)(z_1^{-1}z_2^{-1}) = 1$ then $(z_1z_2)^{-1} = z_1^{-1}z_2^{-1}$.