Complex Variables

Chapter 1. Complex Numbers

Section 1.7. Products and Powers in Exponential Form—Proofs of Theorems

Table of contents

(1) Theorem 1.7.1
(2) Corollary 1.7.2
(3) Corollary 1.7.3

Theorem 1.7.1

Theorem 1.7.1. For $z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}} \in \mathbb{C}$ we have

$$
z_{1} z_{2}=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)} \text { and } \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)} .
$$

Proof. First, notice that

$$
\begin{aligned}
e^{i \theta_{1}} e^{i \theta_{2}}= & \left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
= & \left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right) \\
= & \cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right) \\
& \text { since } \cos \left(\theta_{1} \pm \theta_{2}\right)=\cos \theta_{1} \cos \theta_{2} \mp \sin \theta_{1} \sin \theta_{2} \\
& \text { and } \sin \left(\theta_{1} \pm \theta_{2}\right)=\sin \theta_{1} \cos \theta_{2} \pm \cos \theta_{1} \sin \theta_{2} \\
= & e^{i\left(\theta_{1}+\theta_{2}\right)}
\end{aligned}
$$

So

$$
z_{1} z_{2}=r_{1} e^{i \theta_{1}} r_{2} e^{i \theta_{2}}=\left(r_{1} r_{2}\right) e^{i \theta_{1}} e^{i \theta_{2}}=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

Theorem 1.7.1

Theorem 1.7.1. For $z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}} \in \mathbb{C}$ we have

$$
z_{1} z_{2}=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)} \text { and } \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)} .
$$

Proof. First, notice that

$$
\begin{aligned}
e^{i \theta_{1}} e^{i \theta_{2}}= & \left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
= & \left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right) \\
= & \cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right) \\
& \quad \text { since } \cos \left(\theta_{1} \pm \theta_{2}\right)=\cos \theta_{1} \cos \theta_{2} \mp \sin \theta_{1} \sin \theta_{2} \\
& \quad \text { and } \sin \left(\theta_{1} \pm \theta_{2}\right)=\sin \theta_{1} \cos \theta_{2} \pm \cos \theta_{1} \sin \theta_{2} \\
= & e^{i\left(\theta_{1}+\theta_{2}\right)} .
\end{aligned}
$$

So

$$
z_{1} z_{2}=r_{1} e^{i \theta_{1}} r_{2} e^{i \theta_{2}}=\left(r_{1} r_{2}\right) e^{i \theta_{1}} e^{i \theta_{2}}=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

Theorem 1.7.1 (continued 1)

Theorem 1.7.1. For $z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}} \in \mathbb{C}$ we have

$$
z_{1} z_{2}=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)} \text { and } \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

Proof (continued). Next,

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1} e^{i \theta_{1}}}{r_{2} e^{i \theta_{2}}}=\frac{r_{1}}{r_{2}} \frac{e^{i \theta_{1}} e^{-i \theta_{2}}}{e^{i \theta_{2}} e^{-i \theta_{2}}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

Corollary 1.7.2

Corollary 1.7.2. If $z=r e^{i \theta} \in \mathbb{C}$, then for $n \in \mathbb{Z}$ we have $z^{n}=r^{n} e^{i n \theta}$.
Proof. For $n>0$, we use mathematical induction. First, for the base case $n=1$, the result is trivial. Now suppose the result holds for $n=m$; that is, suppose $z^{m}=r^{m} e^{i m \theta}$ (this is the "induction hypothesis"). To complete the induction argument, we must show the result holds for $n=m+1$.

Corollary 1.7.2

Corollary 1.7.2. If $z=r e^{i \theta} \in \mathbb{C}$, then for $n \in \mathbb{Z}$ we have $z^{n}=r^{n} e^{i n \theta}$.
Proof. For $n>0$, we use mathematical induction. First, for the base case $n=1$, the result is trivial. Now suppose the result holds for $n=m$; that is, suppose $z^{m}=r^{m} e^{i m \theta}$ (this is the "induction hypothesis"). To complete the induction argument, we must show the result holds for $n=m+1$. So consider

```
\(z^{m+1}=z^{m} z=\left(r^{m} e^{i m \theta}\right) z\) by the induction hypothesis
\(=r^{m} e^{i m \theta} r e^{i \theta}=r^{m} r e^{i m \theta} e^{i m \theta}\)
\(=r^{m+1} e^{i(m+1) \theta}\) by Theorem 1.7.1.
```

So the result holds for all $n>0$.

Corollary 1.7.2

Corollary 1.7.2. If $z=r e^{i \theta} \in \mathbb{C}$, then for $n \in \mathbb{Z}$ we have $z^{n}=r^{n} e^{i n \theta}$.
Proof. For $n>0$, we use mathematical induction. First, for the base case $n=1$, the result is trivial. Now suppose the result holds for $n=m$; that is, suppose $z^{m}=r^{m} e^{i m \theta}$ (this is the "induction hypothesis"). To complete the induction argument, we must show the result holds for $n=m+1$. So consider

$$
\begin{aligned}
z^{m+1} & =z^{m} z=\left(r^{m} e^{i m \theta}\right) z \text { by the induction hypothesis } \\
& =r^{m} e^{i m \theta} r e^{i \theta}=r^{m} r e^{i m \theta} e^{i m \theta} \\
& =r^{m+1} e^{i(m+1) \theta} \text { by Theorem 1.7.1. }
\end{aligned}
$$

So the result holds for all $n>0$.
For $n=0$, we have $z^{0}=1$ (by "convention," provided $z \neq 0$) and $1=r^{0} e^{i 0}$, so the result holds for $n=0$.

Corollary 1.7.2

Corollary 1.7.2. If $z=r e^{i \theta} \in \mathbb{C}$, then for $n \in \mathbb{Z}$ we have $z^{n}=r^{n} e^{i n \theta}$.
Proof. For $n>0$, we use mathematical induction. First, for the base case $n=1$, the result is trivial. Now suppose the result holds for $n=m$; that is, suppose $z^{m}=r^{m} e^{i m \theta}$ (this is the "induction hypothesis"). To complete the induction argument, we must show the result holds for $n=m+1$. So consider

$$
\begin{aligned}
z^{m+1} & =z^{m} z=\left(r^{m} e^{i m \theta}\right) z \text { by the induction hypothesis } \\
& =r^{m} e^{i m \theta} r e^{i \theta}=r^{m} r e^{i m \theta} e^{i m \theta} \\
& =r^{m+1} e^{i(m+1) \theta} \text { by Theorem 1.7.1. }
\end{aligned}
$$

So the result holds for all $n>0$.
For $n=0$, we have $z^{0}=1$ (by "convention," provided $z \neq 0$) and $1=r^{0} e^{i 0}$, so the result holds for $n=0$.

Corollary 1.7.2 (continued)

Corollary 1.7.2. If $z=r e^{i \theta} \in \mathbb{C}$, then for $n \in \mathbb{Z}$ we have $z^{n}=r^{n} e^{i n \theta}$.
Proof (continued). For $n<0$, let $m=-n$ (so $m>0$) and

$$
\begin{aligned}
z^{n} & =z^{-m}=\left(z^{-1}\right)^{m}=\left(r^{-1} e^{-i \theta}\right)^{m} \text { by Note 1.7.A } \\
& =r^{-m}\left(e^{-i \theta}\right)^{m}=\left(\frac{1}{r}\right)^{m} \frac{1}{\left(e^{i \theta}\right)^{m}} \\
& =\frac{1}{r^{m}} \frac{1}{e^{i m \theta}} \text { by the first part of the proof, since } m>0 \\
& =r^{-m} e^{i(-m) \theta}=r^{n} e^{i n \theta} .
\end{aligned}
$$

So the result holds for all $n<0$ and hence holds for all $n \in \mathbb{Z}$.

Corollary 1.7.3

Corollary 1.7.3. For all $n \in \mathbb{Z}$, we have

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

Proof. Since $e^{i \theta}=\cos \theta+i \sin \theta$, then

$$
\begin{aligned}
\left(e^{i \theta}\right)^{n} & =(\cos \theta+i \sin \theta)^{n} \\
& =e^{i n \theta} \text { by Corollary 1.7.2 } \\
& =\cos (n \theta)+i \sin (n \theta) .
\end{aligned}
$$

Corollary 1.7.3

Corollary 1.7.3. For all $n \in \mathbb{Z}$, we have

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

Proof. Since $e^{i \theta}=\cos \theta+i \sin \theta$, then

$$
\begin{aligned}
\left(e^{i \theta}\right)^{n} & =(\cos \theta+i \sin \theta)^{n} \\
& =e^{i n \theta} \text { by Corollary 1.7.2 } \\
& =\cos (n \theta)+i \sin (n \theta) .
\end{aligned}
$$

