Complex Variables

Chapter 1. Complex Numbers

Section 2.15. Limits—Proofs of Theorems

Table of contents

(1) Lemma 2.15.A

Lemma 2.15.A

Lemma 2.15.A. Let f be a function defined at all points z in some deleted neighborhood of z_{0}. If $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ and $\lim _{z \rightarrow z_{0}} f(z)=w_{1}$, then $w_{0}=w_{1}$.

Proof. Let $\varepsilon>0$. Then there are $\delta_{1}>0$ and $\delta_{2}>0$ such that

 $0<\left|z-z_{0}\right|<\delta_{1}$ implies $\left|f(z)-w_{0}\right|<\varepsilon / 2$, and $0<\left|z-z_{0}\right|<\delta_{2}$ implies $\left|f(z)-w_{1}\right|<\varepsilon / 2$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then $\delta>0$ and if $0<\left|z-z_{0}\right|<\delta$ then$$
\begin{aligned}
\left|w_{1}-w_{0}\right| & =\left|\left(f(z)-w_{0}\right)-\left(f(z)-w_{1}\right)\right| \\
& \leq\left|f(z)-w_{0}\right|+\left|f(z)-w_{1}\right| \text { by the Triangle Inequality } \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ can be arbitrarily small, then it must be that $w_{0}=w_{1}$, as claimed.

Lemma 2.15.A

Lemma 2.15.A. Let f be a function defined at all points z in some deleted neighborhood of z_{0}. If $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ and $\lim _{z \rightarrow z_{0}} f(z)=w_{1}$, then $w_{0}=w_{1}$.

Proof. Let $\varepsilon>0$. Then there are $\delta_{1}>0$ and $\delta_{2}>0$ such that $0<\left|z-z_{0}\right|<\delta_{1}$ implies $\left|f(z)-w_{0}\right|<\varepsilon / 2$, and $0<\left|z-z_{0}\right|<\delta_{2}$ implies $\left|f(z)-w_{1}\right|<\varepsilon / 2$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then $\delta>0$ and if $0<\left|z-z_{0}\right|<\delta$ then

$$
\begin{aligned}
\left|w_{1}-w_{0}\right| & =\left|\left(f(z)-w_{0}\right)-\left(f(z)-w_{1}\right)\right| \\
& \leq\left|f(z)-w_{0}\right|+\left|f(z)-w_{1}\right| \text { by the Triangle Inequality } \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ can be arbitrarily small, then it must be that $w_{0}=w_{1}$, as claimed.

