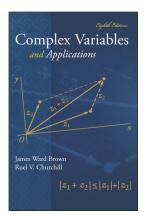
Complex Variables

Chapter 2. Analytic Functions Section 2.19. Derivatives—Proofs of Theorems



Theorem 2.19.A

Theorem 2.19.A. Differentiable implies Continuous. If f is differentiable at point z_0 then f is continuous at z_0 .

Proof. First, by the definition of derivative, the domain of f contains some open neighborhood of z_0 . Also,

$$\lim_{z \to z_0} (f(z) - f(z_0)) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} (z - z_0)$$

=
$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \lim_{z \to z_0} (z - z_0) \text{ provided each constituent limit exists}$$

= $f'(z_0) \cdot 0 = 0.$

Theorem 2.19.A

Theorem 2.19.A. Differentiable implies Continuous. If f is differentiable at point z_0 then f is continuous at z_0 .

Proof. First, by the definition of derivative, the domain of f contains some open neighborhood of z_0 . Also,

$$\lim_{z \to z_0} (f(z) - f(z_0)) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} (z - z_0)$$

=
$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \lim_{z \to z_0} (z - z_0) \text{ provided each constituent limit exists}$$

= $f'(z_0) \cdot 0 = 0.$

Therefore $\lim_{z\to z_0} f(z) - \lim_{z\to z_0} f(z_0) = 0$ or $\lim_{z\to z_0} f(z) = \lim_{z\to z_0} f(z_0) = f(z_0)$. So, by definition, f is continuous at z_0 .

Theorem 2.19.A

Theorem 2.19.A. Differentiable implies Continuous. If f is differentiable at point z_0 then f is continuous at z_0 .

Proof. First, by the definition of derivative, the domain of f contains some open neighborhood of z_0 . Also,

$$\lim_{z \to z_0} (f(z) - f(z_0)) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} (z - z_0)$$
$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \lim_{z \to z_0} (z - z_0) \text{ provided each constituent limit exists}$$

$$= f'(z_0) \cdot 0 = 0.$$

Therefore $\lim_{z\to z_0} f(z) - \lim_{z\to z_0} f(z_0) = 0$ or $\lim_{z\to z_0} f(z) = \lim_{z\to z_0} f(z_0) = f(z_0)$. So, by definition, f is continuous at z_0 .