Complex Variables

Chapter 2. Analytic Functions

Section 2.21. Cauchy-Riemann Equations-Proofs of Theorems

Table of contents

(1) Theorem 2.21.A. Differentiable Implies the C-R Equations

Theorem 2.21.A

Theorem 2.21.A. Differentiable Implies the Cauchy-Riemann

Equations

Suppose that $f(z)=u(x, y)+i v(x, y)$ and that f^{\prime} exists at a point $z_{0}=x_{0}+i y_{0}$. Then the first-order partial derivatives of u and v must exist at (x_{0}, y_{0}), and they must satisfy the Cauchy-Riemann equations:

$$
\frac{\partial}{\partial x}[u(x, y)]=\frac{\partial}{\partial y}[v(x, y)] \text { and } \frac{\partial}{\partial y}[u(x, y)]=-\frac{\partial}{\partial x}[v(x, y)]
$$

(or with subscripts representing partial derivatives, $u_{x}=v_{y}$ and $u_{y}=-v_{x}$) at $\left(x_{0}, y_{0}\right)$. Also, $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$.

Proof. Suppose f^{\prime} exists at $z_{0}=x_{0}+i y_{0}$. Let $\Delta z=\Delta x+i \Delta y$. Then with $w=f(z)$ we have:

Theorem 2.21.A

Theorem 2.21.A. Differentiable Implies the Cauchy-Riemann

Equations

Suppose that $f(z)=u(x, y)+i v(x, y)$ and that f^{\prime} exists at a point $z_{0}=x_{0}+i y_{0}$. Then the first-order partial derivatives of u and v must exist at $\left(x_{0}, y_{0}\right)$, and they must satisfy the Cauchy-Riemann equations:

$$
\frac{\partial}{\partial x}[u(x, y)]=\frac{\partial}{\partial y}[v(x, y)] \text { and } \frac{\partial}{\partial y}[u(x, y)]=-\frac{\partial}{\partial x}[v(x, y)]
$$

(or with subscripts representing partial derivatives, $u_{x}=v_{y}$ and $u_{y}=-v_{x}$) at $\left(x_{0}, y_{0}\right)$. Also, $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$.

Proof. Suppose f^{\prime} exists at $z_{0}=x_{0}+i y_{0}$. Let $\Delta z=\Delta x+i \Delta y$. Then with $w=f(z)$ we have:

Theorem 2.21.A (continued 1)

Proof (continued).

$$
\begin{gathered}
\frac{\Delta w}{\Delta z}=\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \\
=\frac{\left\{u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)\right\}+i\left\{v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)\right\}}{\Delta x+i \Delta y}
\end{gathered}
$$

Then $f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0}(\Delta w / \Delta z)$, so by Theorem 2.16.1,

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Re}\left(\frac{\Delta w}{\Delta z}\right)+i \lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Im}\left(\frac{\Delta w}{\Delta z}\right) . \tag{3}
\end{equation*}
$$

We now apply the contrapositive of the Two-Path Test for the Nonexistence of a Limit for a function of two variables (see Note 2.15.A), which implies that if a limit exists as $\Delta z \rightarrow 0$ then the limit exists and is the same along all paths for which $\Delta z \rightarrow 0$.

Theorem 2.21.A (continued 1)

Proof (continued).

$$
\begin{gathered}
\frac{\Delta w}{\Delta z}=\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \\
=\frac{\left\{u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)\right\}+i\left\{v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)\right\}}{\Delta x+i \Delta y}
\end{gathered}
$$

Then $f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0}(\Delta w / \Delta z)$, so by Theorem 2.16.1,

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Re}\left(\frac{\Delta w}{\Delta z}\right)+i \lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Im}\left(\frac{\Delta w}{\Delta z}\right) . \tag{3}
\end{equation*}
$$

We now apply the contrapositive of the Two-Path Test for the Nonexistence of a Limit for a function of two variables (see Note 2.15.A), which implies that if a limit exists as $\Delta z \rightarrow 0$ then the limit exists and is the same along all paths for which $\Delta z \rightarrow 0$.

Theorem 2.21.A (continued 2)

Proof (continued). In particular, we can let $\Delta z \rightarrow 0$ along the real axis (where $\Delta y=0$) or along the imaginary axis (where $\Delta x=0$). We first consider $\Delta z \rightarrow 0$ along the real axis and have for the real and imaginary parts of equation (3) that

$$
\begin{gathered}
\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Re}\left(\frac{\Delta w}{\Delta z}\right)=\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x} \\
=\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x}=u_{x}\left(x_{0}, y_{0}\right)
\end{gathered}
$$

Theorem 2.21.A (continued 2)

Proof (continued). In particular, we can let $\Delta z \rightarrow 0$ along the real axis (where $\Delta y=0$) or along the imaginary axis (where $\Delta x=0$). We first consider $\Delta z \rightarrow 0$ along the real axis and have for the real and imaginary parts of equation (3) that

$$
\begin{gathered}
\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Re}\left(\frac{\Delta w}{\Delta z}\right)=\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x} \\
=\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x}=u_{x}\left(x_{0}, y_{0}\right)
\end{gathered}
$$

and

Theorem 2.21.A (continued 2)

Proof (continued). In particular, we can let $\Delta z \rightarrow 0$ along the real axis (where $\Delta y=0$) or along the imaginary axis (where $\Delta x=0$). We first consider $\Delta z \rightarrow 0$ along the real axis and have for the real and imaginary parts of equation (3) that

$$
\begin{gathered}
\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Re}\left(\frac{\Delta w}{\Delta z}\right)=\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x} \\
=\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x}=u_{x}\left(x_{0}, y_{0}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{lm}\left(\frac{\Delta w}{\Delta z}\right)=\lim _{\Delta x \rightarrow 0} \frac{v\left(x_{0}+\Delta x, y_{0}\right)-v\left(x_{0}, y_{0}\right)}{\Delta x} \\
=\lim _{\Delta x \rightarrow 0} \frac{v\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x}=v_{x}\left(x_{0}, y_{0}\right) .
\end{gathered}
$$

Theorem 2.21.A (continued 2)

Proof (continued). In particular, we can let $\Delta z \rightarrow 0$ along the real axis (where $\Delta y=0$) or along the imaginary axis (where $\Delta x=0$). We first consider $\Delta z \rightarrow 0$ along the real axis and have for the real and imaginary parts of equation (3) that

$$
\begin{gathered}
\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Re}\left(\frac{\Delta w}{\Delta z}\right)=\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x} \\
=\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x}=u_{x}\left(x_{0}, y_{0}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{lm}\left(\frac{\Delta w}{\Delta z}\right)=\lim _{\Delta x \rightarrow 0} \frac{v\left(x_{0}+\Delta x, y_{0}\right)-v\left(x_{0}, y_{0}\right)}{\Delta x} \\
=\lim _{\Delta x \rightarrow 0} \frac{v\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x}=v_{x}\left(x_{0}, y_{0}\right) .
\end{gathered}
$$

So by (3), $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$ and f^{\prime} has the form as claimed.

Theorem 2.21.A (continued 3)

Proof (continued). Second, with $\Delta z \rightarrow 0$ along the imaginary axis so that $\Delta z=i \Delta y, \Delta y \rightarrow 0$, and $\Delta x=0$, we have

$$
\begin{gathered}
\frac{\Delta w}{\Delta z}=\frac{u\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{i \Delta y}+i \frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{i \Delta y} \\
=\frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta y}-i \frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta y}
\end{gathered}
$$

and so

$\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Re}\left(\frac{\Delta w}{\Delta z}\right)=\lim _{\Delta y \rightarrow 0} \frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta y}=v_{y}\left(x_{0}, y_{0}\right)$

and

Theorem 2.21.A (continued 3)

Proof (continued). Second, with $\Delta z \rightarrow 0$ along the imaginary axis so that $\Delta z=i \Delta y, \Delta y \rightarrow 0$, and $\Delta x=0$, we have

$$
\begin{gathered}
\frac{\Delta w}{\Delta z}=\frac{u\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{i \Delta y}+i \frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{i \Delta y} \\
=\frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta y}-i \frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta y}
\end{gathered}
$$

and so

$$
\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Re}\left(\frac{\Delta w}{\Delta z}\right)=\lim _{\Delta y \rightarrow 0} \frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta y}=v_{y}\left(x_{0}, y_{0}\right)
$$

and
$\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{lm}\left(\frac{\Delta w}{\Delta z}\right)=\lim _{\Delta y \rightarrow 0}-\frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta y}=-u_{y}\left(x_{0}, y_{0}\right)$.

Theorem 2.21.A (continued 3)

Proof (continued). Second, with $\Delta z \rightarrow 0$ along the imaginary axis so that $\Delta z=i \Delta y, \Delta y \rightarrow 0$, and $\Delta x=0$, we have

$$
\begin{gathered}
\frac{\Delta w}{\Delta z}=\frac{u\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{i \Delta y}+i \frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{i \Delta y} \\
=\frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta y}-i \frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta y}
\end{gathered}
$$

and so

$$
\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Re}\left(\frac{\Delta w}{\Delta z}\right)=\lim _{\Delta y \rightarrow 0} \frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta y}=v_{y}\left(x_{0}, y_{0}\right)
$$

and
$\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Im}\left(\frac{\Delta w}{\Delta z}\right)=\lim _{\Delta y \rightarrow 0}-\frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta y}=-u_{y}\left(x_{0}, y_{0}\right)$.
So by (3), $f^{\prime}\left(z_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right)$.

Theorem 2.21.A (continued 4)

Theorem 2.21.A. Differentiable Implies the Cauchy-Riemann

 EquationsSuppose that $f(z)=u(x, y)+i v(x, y)$ and that f^{\prime} exists at a point $z_{0}=x_{0}+i y_{0}$. Then the first-order partial derivatives of u and v must exist at (x_{0}, y_{0}), and they must satisfy the Cauchy-Riemann equations:

$$
\frac{\partial}{\partial x}[u(x, y)]=\frac{\partial}{\partial y}[v(x, y)] \text { and } \frac{\partial}{\partial y}[u(x, y)]=-\frac{\partial}{\partial x}[v(x, y)]
$$

(or with subscripts representing partial derivatives, $u_{x}=v_{y}$ and $u_{y}=-v_{x}$) at $\left(x_{0}, y_{0}\right)$. Also, $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$.

Proof (continued). Since $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right)$, then we must have $u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)$ and $v_{x}\left(x_{0}, y_{0}\right)=-u_{y}\left(x_{0}, y_{0}\right)$.

