Complex Variables

Chapter 2. Analytic Functions

Section 2.22. Sufficient Conditions for Differentiability—Proofs of Theorems

Table of contents

(1) Theorem 2.22.A. C-R and Continuity Imply Differentiability

Theorem 2.22.A

Theorem 2.22.A. The Cauchy-Riemann Equations and Continuity Imply Differentiability

Let the function $f(z)=u(x, y)+i v(x, y)$ be defined throughout some ε neighborhood of a point $z_{0}=x_{0}+i y_{0}$, and suppose that
(a) the first-order partial derivatives of the functions u and v with respect to x and y exist everywhere in the neighborhood, and
(b) those partial derivatives are continuous at $\left(x_{0}, y_{0}\right)$ and satisfy the Cauchy-Riemann equations $u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)$ and $y_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)$.
Then $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$.
Proof. We present the proof given by Brown and Churchill. A more self-contained proof based on the Mean Value Theorem is given in my notes for Complex Analysis 1 (MATH 5510) on III.2. Analytic Functions.

Theorem 2.22.A

Theorem 2.22.A. The Cauchy-Riemann Equations and Continuity Imply Differentiability

Let the function $f(z)=u(x, y)+i v(x, y)$ be defined throughout some ε neighborhood of a point $z_{0}=x_{0}+i y_{0}$, and suppose that
(a) the first-order partial derivatives of the functions u and v with respect to x and y exist everywhere in the neighborhood, and
(b) those partial derivatives are continuous at $\left(x_{0}, y_{0}\right)$ and satisfy the Cauchy-Riemann equations $u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)$ and $y_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)$.
Then $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$.
Proof. We present the proof given by Brown and Churchill. A more self-contained proof based on the Mean Value Theorem is given in my notes for Complex Analysis 1 (MATH 5510) on III.2. Analytic Functions.

Theorem 2.22A (continued 1)

Proof (continued). Let $\Delta z=\Delta x+i \Delta y$ where $0<|\Delta z|<\varepsilon$ and let $\Delta w=f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)$. We take $\Delta w=\Delta u+i \Delta v$ where
$\Delta u=u\left(x_{0}+\Delta x, y_{0}+\Delta y_{0}\right)-u\left(x_{0}, y_{0}\right), \Delta v=v\left(x_{0}+\Delta x, y_{0}+\Delta y_{0}\right)-v\left(x_{0}, y_{0}\right)$.
By (b), the first order partial derivatives of u and v are continuous at (x_{0}, y_{0}), so by a result from advanced calculus (see W. Kaplan's Advanced Calculus, 5th ed., page 86 (2003)) we may write

$$
\begin{aligned}
\Delta u & =u_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \\
\Delta v & =v_{x}\left(x_{0}, y_{0}\right) \Delta x+v_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{3} \Delta x+\varepsilon_{4} \Delta y
\end{aligned}
$$

where $\varepsilon_{i} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$ for $i=1,2,3,4$.

Theorem 2.22A (continued 1)

Proof (continued). Let $\Delta z=\Delta x+i \Delta y$ where $0<|\Delta z|<\varepsilon$ and let $\Delta w=f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)$. We take $\Delta w=\Delta u+i \Delta v$ where
$\Delta u=u\left(x_{0}+\Delta x, y_{0}+\Delta y_{0}\right)-u\left(x_{0}, y_{0}\right), \Delta v=v\left(x_{0}+\Delta x, y_{0}+\Delta y_{0}\right)-v\left(x_{0}, y_{0}\right)$.
By (b), the first order partial derivatives of u and v are continuous at (x_{0}, y_{0}), so by a result from advanced calculus (see W. Kaplan's Advanced Calculus, 5th ed., page 86 (2003)) we may write

$$
\begin{aligned}
\Delta u & =u_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \\
\Delta v & =v_{x}\left(x_{0}, y_{0}\right) \Delta x+v_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{3} \Delta x+\varepsilon_{4} \Delta y
\end{aligned}
$$

where $\varepsilon_{i} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$ for $i=1,2,3,4$. So we can express

$$
\begin{aligned}
& \Delta w=\left(u_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y\right) \\
& \quad+i\left(v_{x}\left(x_{0}, y_{0}\right) \Delta x+v_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{3} \Delta x+\varepsilon_{4} \Delta y\right)
\end{aligned}
$$

Theorem 2.22A (continued 1)

Proof (continued). Let $\Delta z=\Delta x+i \Delta y$ where $0<|\Delta z|<\varepsilon$ and let $\Delta w=f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)$. We take $\Delta w=\Delta u+i \Delta v$ where
$\Delta u=u\left(x_{0}+\Delta x, y_{0}+\Delta y_{0}\right)-u\left(x_{0}, y_{0}\right), \Delta v=v\left(x_{0}+\Delta x, y_{0}+\Delta y_{0}\right)-v\left(x_{0}, y_{0}\right)$.
By (b), the first order partial derivatives of u and v are continuous at (x_{0}, y_{0}), so by a result from advanced calculus (see W. Kaplan's Advanced Calculus, 5th ed., page 86 (2003)) we may write

$$
\begin{aligned}
\Delta u & =u_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \\
\Delta v & =v_{x}\left(x_{0}, y_{0}\right) \Delta x+v_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{3} \Delta x+\varepsilon_{4} \Delta y
\end{aligned}
$$

where $\varepsilon_{i} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$ for $i=1,2,3,4$. So we can express

$$
\begin{aligned}
& \Delta w=\left(u_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y\right) \\
& \quad+i\left(v_{x}\left(x_{0}, y_{0}\right) \Delta x+v_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{3} \Delta x+\varepsilon_{4} \Delta y\right)
\end{aligned}
$$

Theorem 2.22.A (continued 2)

Proof (continued). Since we hypothesize that the Cauchy-Riemann equations are satisfied at $\left(x_{0}, y_{0}\right)$, then $u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)$ and $v_{y}\left(x_{0}, y_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)$ and so

$$
\begin{gathered}
\Delta w=\left(u_{x}\left(x_{0}, y_{0}\right) \Delta x-v_{x}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y\right) \\
+i\left(v_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{x}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{3} \Delta x+\varepsilon_{4} \Delta y\right) \\
=u_{x}\left(x_{0}, y_{0}\right)(\Delta x+i \Delta y)+i v_{x}\left(x_{0}, y_{0}\right)(\Delta x+i \Delta y)+\left(\varepsilon_{1}+i \varepsilon_{3}\right) \Delta x+\left(\varepsilon_{2}+i \varepsilon_{4}\right) \Delta y
\end{gathered}
$$

and

But $|\Delta x| \leq|\Delta z|$ and $|\Delta y| \leq|\Delta z|$ (by the Triangle Inequality, say), so $|\Delta x / \Delta z| \leq 1$ and $|\Delta y / \Delta z| \leq 1$.

Theorem 2.22.A (continued 2)

Proof (continued). Since we hypothesize that the Cauchy-Riemann equations are satisfied at $\left(x_{0}, y_{0}\right)$, then $u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)$ and $v_{y}\left(x_{0}, y_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)$ and so

$$
\begin{aligned}
& \qquad \Delta w=\left(u_{x}\left(x_{0}, y_{0}\right) \Delta x-v_{x}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y\right) \\
& +i\left(v_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{x}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{3} \Delta x+\varepsilon_{4} \Delta y\right) \\
& =u_{x}\left(x_{0}, y_{0}\right)(\Delta x+i \Delta y)+i v_{x}\left(x_{0}, y_{0}\right)(\Delta x+i \Delta y)+\left(\varepsilon_{1}+i \varepsilon_{3}\right) \Delta x+\left(\varepsilon_{2}+i \varepsilon_{4}\right) \Delta y \\
& \text { and }
\end{aligned}
$$

$$
\frac{\Delta w}{\Delta z}=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)+\left(\varepsilon_{1}+i \varepsilon_{3}\right) \frac{\Delta x}{\Delta z}+\left(\varepsilon_{2}+i \varepsilon_{4}\right) \frac{\Delta y}{\Delta z} .
$$

But $|\Delta x| \leq|\Delta z|$ and $|\Delta y| \leq|\Delta z|$ (by the Triangle Inequality, say), so $|\Delta x / \Delta z| \leq 1$ and $|\Delta y / \Delta z| \leq 1$.

Theorem 2.22.A (continued 3)

Proof (continued). Consequently,

$$
\left|\left(\varepsilon_{1}+i \varepsilon_{3}\right) \frac{\Delta x}{\Delta z}\right|=\left|\varepsilon_{1}+i \varepsilon_{3}\right|\left|\frac{\Delta x}{\Delta z}\right| \leq\left|\varepsilon_{1}+i \varepsilon_{3}\right| \leq\left|\varepsilon_{1}\right|+\left|\varepsilon_{3}\right|
$$

and

$$
\left|\left(\varepsilon_{2}+i \varepsilon_{4}\right) \frac{\Delta x}{\Delta z}\right|=\left|\varepsilon_{2}+i \varepsilon_{4}\right|\left|\frac{\Delta x}{\Delta z}\right| \leq\left|\varepsilon_{2}+i \varepsilon_{4}\right| \leq\left|\varepsilon_{2}\right|+\left|\varepsilon_{4}\right| .
$$

So as $\Delta z=\Delta z+i \Delta y \rightarrow 0$, we have that $\left|\left(\varepsilon_{1}+i \varepsilon_{3}\right) \Delta x / \Delta z\right| \rightarrow 0$ and $\left|\left(\varepsilon_{2}+i \varepsilon_{4}\right) \Delta x / \Delta z\right| \rightarrow 0$. Therefore,

$=\lim _{\Delta z \rightarrow 0}\left(u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)+\left(\varepsilon_{1}+i \varepsilon_{3}\right) \frac{\Delta x}{\Delta z}+\left(\varepsilon_{2}+i \varepsilon_{4}\right) \frac{\Delta y}{\Delta z}\right)$
$=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$.

Theorem 2.22.A (continued 3)

Proof (continued). Consequently,

$$
\left|\left(\varepsilon_{1}+i \varepsilon_{3}\right) \frac{\Delta x}{\Delta z}\right|=\left|\varepsilon_{1}+i \varepsilon_{3}\right|\left|\frac{\Delta x}{\Delta z}\right| \leq\left|\varepsilon_{1}+i \varepsilon_{3}\right| \leq\left|\varepsilon_{1}\right|+\left|\varepsilon_{3}\right|
$$

and

$$
\left|\left(\varepsilon_{2}+i \varepsilon_{4}\right) \frac{\Delta x}{\Delta z}\right|=\left|\varepsilon_{2}+i \varepsilon_{4}\right|\left|\frac{\Delta x}{\Delta z}\right| \leq\left|\varepsilon_{2}+i \varepsilon_{4}\right| \leq\left|\varepsilon_{2}\right|+\left|\varepsilon_{4}\right| .
$$

So as $\Delta z=\Delta z+i \Delta y \rightarrow 0$, we have that $\left|\left(\varepsilon_{1}+i \varepsilon_{3}\right) \Delta x / \Delta z\right| \rightarrow 0$ and $\left|\left(\varepsilon_{2}+i \varepsilon_{4}\right) \Delta x / \Delta z\right| \rightarrow 0$. Therefore,

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z}
$$

$=\lim _{\Delta z \rightarrow 0}\left(u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)+\left(\varepsilon_{1}+i \varepsilon_{3}\right) \frac{\Delta x}{\Delta z}+\left(\varepsilon_{2}+i \varepsilon_{4}\right) \frac{\Delta y}{\Delta z}\right)$
$=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$.

