Complex Variables

Chapter 2. Analytic Functions Section 2.23. Polar Coordinates—Proofs of Theorems

Table of contents

Lemma 2.23.A

Lemma 2.23.A. Let the function f(z) = u(x, y) + iv(x, y) be defined throughout some ε neighborhood of a point $z_0 = x_0 + iy_0$, and suppose that

- (a) the first-order partial derivatives of the functions u and v with respect to x and y exist everywhere in the neighborhood, and
- (b) those partial derivatives are continuous at (x_0, y_0) and satisfy the Cauchy-Riemann equations $u_x(x_0, y_0) = v_y(x_0, y_0)$ and $y_y(x_0, y_0) = -v_x(x_0, y_0)$.

Then with $z_0 = r_0 \exp(i\theta) \neq 0$ we have

$$r_0 u_r(r_0, \theta_0) = v_{\theta}(r_0, \theta_0) \text{ and } u_{\theta}(r_0, \theta_0) = -r_0 v_r(r_0, \theta_0).$$

These are the polar coordinate forms of the Cauchy-Riemann equations.

Proof. We have f(z) = f(x + iy) = u(x, y) + iv(x, y) and, for $z \neq 0$, $z = r \exp(i\theta)$. Also, $x = r \cos \theta$ and $y = r \sin \theta$.

Lemma 2.23.A

Lemma 2.23.A. Let the function f(z) = u(x, y) + iv(x, y) be defined throughout some ε neighborhood of a point $z_0 = x_0 + iy_0$, and suppose that

- (a) the first-order partial derivatives of the functions u and v with respect to x and y exist everywhere in the neighborhood, and
- (b) those partial derivatives are continuous at (x_0, y_0) and satisfy the Cauchy-Riemann equations $u_x(x_0, y_0) = v_y(x_0, y_0)$ and $y_y(x_0, y_0) = -v_x(x_0, y_0)$.

Then with $z_0 = r_0 \exp(i\theta) \neq 0$ we have

$$r_0 u_r(r_0, \theta_0) = v_{\theta}(r_0, \theta_0) \text{ and } u_{\theta}(r_0, \theta_0) = -r_0 v_r(r_0, \theta_0).$$

These are the polar coordinate forms of the Cauchy-Riemann equations.

Proof. We have f(z) = f(x + iy) = u(x, y) + iv(x, y) and, for $z \neq 0$, $z = r \exp(i\theta)$. Also, $x = r \cos \theta$ and $y = r \sin \theta$.

Lemma 2.23.A (continued)

Proof (continued). By the Chain Rule

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial r} = u_x\cos\theta + u_y\sin\theta \text{ and}$$
$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial \theta} = -u_xr\sin\theta + u_yr\cos\theta. \quad (2)$$
Similarly,
$$\frac{\partial v}{\partial r} = v_x\cos\theta + v_y\sin\theta \text{ and } \frac{\partial v}{\partial \theta} = -v_xr\sin\theta + v_yr\cos\theta. \quad (3)$$
Assuming the Cauchy-Riemann equations in (x, y) hold, we have $u_x = v_y$ and $u_y = -v_x$ at (x_0, y_0) . So from (5)

$$v_r = v_x \cos \theta + v_y \sin \theta = -u_y \cos \theta + u_x \sin \theta$$
 and

$$v_{\theta} = -v_{x}r\sin\theta + v_{y}r\cos\theta = u_{y}r\sin\theta + u_{x}r\cos\theta \quad (5)$$

at (r_0, θ_0) .

4 / 4

Lemma 2.23.A (continued)

Proof (continued). By the Chain Rule

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial r} = u_x\cos\theta + u_y\sin\theta \text{ and}$$
$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial \theta} = -u_xr\sin\theta + u_yr\cos\theta. \quad (2)$$
Similarly, $\frac{\partial v}{\partial r} = v_x\cos\theta + v_y\sin\theta$ and $\frac{\partial v}{\partial \theta} = -v_xr\sin\theta + v_yr\cos\theta. \quad (3)$ Assuming the Cauchy-Riemann equations in (x, y) hold, we have $u_x = v_y$ and $u_y = -v_x$ at (x_0, y_0) . So from (5)
 $v_r = v_x\cos\theta + v_y\sin\theta = -u_y\cos\theta + u_x\sin\theta$ and $v_\theta = -v_xr\sin\theta + v_yr\cos\theta. \quad (5)$ at (r_0, θ_0) . Comparing (2) and (5) we have $ru_r = v_\theta$ and $u_\theta = -rv_r$ at

()

Lemma 2.23.A (continued)

Proof (continued). By the Chain Rule

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial r} = u_x\cos\theta + u_y\sin\theta \text{ and}$$
$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial \theta} = -u_xr\sin\theta + u_yr\cos\theta. \quad (2)$$
Similarly, $\frac{\partial v}{\partial r} = v_x\cos\theta + v_y\sin\theta$ and $\frac{\partial v}{\partial \theta} = -v_xr\sin\theta + v_yr\cos\theta. \quad (3)$ Assuming the Cauchy-Riemann equations in (x, y) hold, we have $u_x = v_y$ and $u_y = -v_x$ at (x_0, y_0) . So from (5)
 $v_r = v_x\cos\theta + v_y\sin\theta = -u_y\cos\theta + u_x\sin\theta$ and $v_\theta = -v_xr\sin\theta + v_yr\cos\theta. \quad (5)$ at (r_0, θ_0) . Comparing (2) and (5) we have $ru_r = v_\theta$ and $u_\theta = -rv_r$ at

()

at (r_0, θ) (r_0, θ_0) .