Complex Variables

Chapter 2. Analytic Functions

Section 2.24. Analytic Functions-Proofs of Theorems

Table of contents

(1) Theorem 2.24.A.

Theorem 2.24.A

Theorem 2.24.A. If $f^{\prime}(z)=0$ everywhere in a domain D, then f must be constant throughout D.

Proof. Let $f(z)=f(x+i y)=u(x, y)+i v(x, y)$. Since $f^{\prime}(z)=0$ for all $z \in D$ (where D is an open connected set), then f is differentiable on D and so satisfies the Cauchy-Riemann equations.

Theorem 2.24.A

Theorem 2.24.A. If $f^{\prime}(z)=0$ everywhere in a domain D, then f must be constant throughout D.

Proof. Let $f(z)=f(x+i y)=u(x, y)+i v(x, y)$. Since $f^{\prime}(z)=0$ for all $z \in D$ (where D is an open connected set), then f is differentiable on D and so satisfies the Cauchy-Riemann equations. By Theorem 2.21.A, $f^{\prime}(z)=f^{\prime}(x+i y)=u_{x}(x, y)+i v_{x}(x, y)$ and by the Cauchy-Riemann equations $f^{\prime}(z)=f^{\prime}(x+i y)=v_{y}(x, y)-i u_{y}(x, y)$. Since $f^{\prime}(z)=0$ in D, then $u_{x}(x, y)=u_{y}(x, y)=0$ and $v_{x}(x, y)=v_{y}(x, y)=0$ at each point of D.

Theorem 2.24.A

Theorem 2.24.A. If $f^{\prime}(z)=0$ everywhere in a domain D, then f must be constant throughout D.

Proof. Let $f(z)=f(x+i y)=u(x, y)+i v(x, y)$. Since $f^{\prime}(z)=0$ for all $z \in D$ (where D is an open connected set), then f is differentiable on D and so satisfies the Cauchy-Riemann equations. By Theorem 2.21.A, $f^{\prime}(z)=f^{\prime}(x+i y)=u_{x}(x, y)+i v_{x}(x, y)$ and by the Cauchy-Riemann equations $f^{\prime}(z)=f^{\prime}(x+i y)=v_{y}(x, y)-i u_{y}(x, y)$. Since $f^{\prime}(z)=0$ in D, then $u_{x}(x, y)=u_{y}(x, y)=0$ and $v_{x}(x, y)=v_{y}(x, y)=0$ at each point of D.

Next, we consider $u(x, y)$ as a function of two real variables and approach it with some equipment from Calculus 3. Let P be a point in D and let P^{\prime} be another point in D which lies on a line L which lies in D. Let \mathbf{U} denote the unit vector along line L directed from P to P^{\prime}. Let s denote the distance along L from point P. See Figure 2.30.

Theorem 2.24.A

Theorem 2.24.A. If $f^{\prime}(z)=0$ everywhere in a domain D, then f must be constant throughout D.

Proof. Let $f(z)=f(x+i y)=u(x, y)+i v(x, y)$. Since $f^{\prime}(z)=0$ for all $z \in D$ (where D is an open connected set), then f is differentiable on D and so satisfies the Cauchy-Riemann equations. By Theorem 2.21.A, $f^{\prime}(z)=f^{\prime}(x+i y)=u_{x}(x, y)+i v_{x}(x, y)$ and by the Cauchy-Riemann equations $f^{\prime}(z)=f^{\prime}(x+i y)=v_{y}(x, y)-i u_{y}(x, y)$. Since $f^{\prime}(z)=0$ in D, then $u_{x}(x, y)=u_{y}(x, y)=0$ and $v_{x}(x, y)=v_{y}(x, y)=0$ at each point of D.

Next, we consider $u(x, y)$ as a function of two real variables and approach it with some equipment from Calculus 3. Let P be a point in D and let P^{\prime} be another point in D which lies on a line L which lies in D. Let \mathbf{U} denote the unit vector along line L directed from P to P^{\prime}. Let s denote the distance along L from point P. See Figure 2.30.

Theorem 2.24.A (continued 1)

Proof (continued).

FIGURE 30
The directional derivative of $u(x, y)$ along line L is then $\frac{d u}{d s}=\operatorname{grad}(u) \cdot \mathbf{U}$ where $\operatorname{grad}(u)=\nabla u=u_{x}(x, y) \mathbf{i}+u_{y}(x, y) \mathbf{j}$ (see Theorem 9 in my Calculus 3 (MATH 2110) notes on 14.5. Directional Derivatives and Gradient Vectors).

Theorem 2.24.A (continued 1)

Proof (continued).

FIGURE 30
The directional derivative of $u(x, y)$ along line L is then $\frac{d u}{d s}=\operatorname{grad}(u) \cdot \mathbf{U}$ where $\operatorname{grad}(u)=\nabla u=u_{x}(x, y) \mathbf{i}+u_{y}(x, y) \mathbf{j}$ (see Theorem 9 in my Calculus 3 (MATH 2110) notes on 14.5. Directional Derivatives and Gradient Vectors). Since $u_{x}(x, y)=u_{y}(x, y)=0$ for all $(x, y) \in D$, then $\operatorname{grad}(u)=0$ at all points along L. So u is constant on L and the value of u at point P is the same as its value at P^{\prime}.

Theorem 2.24.A (continued 1)

Proof (continued).

FIGURE 30
The directional derivative of $u(x, y)$ along line L is then $\frac{d u}{d s}=\operatorname{grad}(u) \cdot \mathbf{U}$ where $\operatorname{grad}(u)=\nabla u=u_{x}(x, y) \mathbf{i}+u_{y}(x, y) \mathbf{j}$ (see Theorem 9 in my Calculus 3 (MATH 2110) notes on 14.5. Directional Derivatives and Gradient Vectors). Since $u_{x}(x, y)=u_{y}(x, y)=0$ for all $(x, y) \in D$, then $\operatorname{grad}(u)=\mathbf{0}$ at all points along L. So u is constant on L and the value of u at point P is the same as its value at P^{\prime}.

Theorem 2.24.A (continued 2)

Theorem 2.24.A. If $f^{\prime}(z)=0$ everywhere in a domain D, then f must be constant throughout D.

Proof (continued). Since D is an open connected set, then any two points in D can be joined by a sequence of line segments in D (the is Theorem II. 2.3 in Conway's Functions of One Complex Variable l; see my notes for Complex Analysis 1 on II.2. Connectedness). So if P and Q are any two points in D, then there is a sequence of line segments in D, say $\overline{P P_{1}}, \overline{P_{1} P_{2}}, \ldots, \overline{P_{n} Q}$, joining P to Q. As argued above, the value of u is the same at each of the points $P, P_{1}, P_{2}, \ldots, P_{n}, Q$ and so the value of u is the same at P and Q.

Theorem 2.24.A (continued 2)

Theorem 2.24.A. If $f^{\prime}(z)=0$ everywhere in a domain D, then f must be constant throughout D.

Proof (continued). Since D is an open connected set, then any two points in D can be joined by a sequence of line segments in D (the is Theorem II. 2.3 in Conway's Functions of One Complex Variable I; see my notes for Complex Analysis 1 on II.2. Connectedness). So if P and Q are any two points in D, then there is a sequence of line segments in D, say $\overline{P P_{1}}, \overline{P_{1} P_{2}}, \ldots, \overline{P_{n} Q}$, joining P to Q. As argued above, the value of u is the same at each of the points $P, P_{1}, P_{2}, \ldots, P_{n}, Q$ and so the value of u is the same at P and Q. Since P and Q are arbitrary points in D, then u is constant on D, say $u(x, y)=a$ for all $(x, y) \in D$.

Theorem 2.24.A (continued 2)

Theorem 2.24.A. If $f^{\prime}(z)=0$ everywhere in a domain D, then f must be constant throughout D.

Proof (continued). Since D is an open connected set, then any two points in D can be joined by a sequence of line segments in D (the is Theorem II.2.3 in Conway's Functions of One Complex Variable I; see my notes for Complex Analysis 1 on II.2. Connectedness). So if P and Q are any two points in D, then there is a sequence of line segments in D, say $\overline{P P_{1}}, \overline{P_{1} P_{2}}, \ldots, \overline{P_{n} Q}$, joining P to Q. As argued above, the value of u is the same at each of the points $P, P_{1}, P_{2}, \ldots, P_{n}, Q$ and so the value of u is the same at P and Q. Since P and Q are arbitrary points in D, then u is constant on D, say $u(x, y)=a$ for all $(x, y) \in D$.

Similarly, since $v_{x}(x, y)=v_{y}(x, y)=0$ on D, then $v(x, y)$ is constant on D, say $v(x, y)=b$ for all $(x, y) \in D$. Therefore f is constant on D and $f(z)=a+i b$ for some $a+i b \in \mathbb{C}$.

Theorem 2.24.A (continued 2)

Theorem 2.24.A. If $f^{\prime}(z)=0$ everywhere in a domain D, then f must be constant throughout D.

Proof (continued). Since D is an open connected set, then any two points in D can be joined by a sequence of line segments in D (the is Theorem II.2.3 in Conway's Functions of One Complex Variable I; see my notes for Complex Analysis 1 on II.2. Connectedness). So if P and Q are any two points in D, then there is a sequence of line segments in D, say $\overline{P P_{1}}, \overline{P_{1} P_{2}}, \ldots, \overline{P_{n} Q}$, joining P to Q. As argued above, the value of u is the same at each of the points $P, P_{1}, P_{2}, \ldots, P_{n}, Q$ and so the value of u is the same at P and Q. Since P and Q are arbitrary points in D, then u is constant on D, say $u(x, y)=a$ for all $(x, y) \in D$.

Similarly, since $v_{x}(x, y)=v_{y}(x, y)=0$ on D, then $v(x, y)$ is constant on D, say $v(x, y)=b$ for all $(x, y) \in D$. Therefore f is constant on D and $f(z)=a+i b$ for some $a+i b \in \mathbb{C}$.

