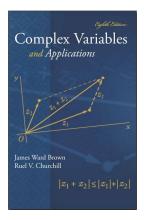
Complex Variables

Chapter 2. Analytic Functions

Section 2.25. Examples—Proofs of Theorems



Complex Variables

January 11, 2020 1

Complex Variables

January 11, 2020

000 2 /

Theorem 2.25./

Theorem 2.25.A (continued)

Theorem 2.25.A.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) and its conjugate $\overline{f(z)} = u(x, y) - iv(x, y)$ are both analytic in a given domain D. Then f is constant throughout D.

Proof (continued). Throughout D we have:

$$u_x(x,y) = v_y(x,y) \text{ and } u_y(x,y) = -v_x(x,y)$$
 (2)

$$u_x(x,y) = -v_y(x,y) \text{ and } u_y(x,y) = v_x(x,y)$$
 (4)

Adding the respective sides of the first equations in (2) and (4) yields $u_x = 0$ on D. Subtracting the respective sides of the second equations in (2) and (4) yields $v_x = 0$ on D. So by Theorem 2.21.A, $f'(z) = u_x(x,y) + iv_x(x,y) = 0$ and so by Theorem 2.24.A, f is constant on D.

Theorem 2.25.A.

Theorem 2.25.A

Theorem 2.25.A.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) and its conjugate $\overline{f(z)} = u(x, y) - iv(x, y)$ are both analytic in a given domain D. Then f is constant throughout D.

Proof. Write
$$\overline{f(z)} = U(x,y) + iV(x,y)$$
, so that

$$U(x,y) = u(x,y) \text{ and } V(x,y) = -v(x,y).$$
 (1)

Since f is analytic in D then the Cauchy-Riemann equations are satisfied, by Theorem 2.21.A, and so

$$u_x(x,y) = v_y(x,y) \text{ and } u_y(x,y) = -v_x(x,y)$$
 (2)

for all (x,y) in D. Since \overline{f} is analytic in D, then the Cauchy-Riemann equations also give $U_x(x,y)=V_y(x,y)$ and $U_y(x,y)=-V_x(x,y)$ for all (x,y) in D. By equations (1), we therefore have throughout D that

$$u_x(x,y) = -v_y(x,y)$$
 and $u_y(x,y) = -(-v_x(x,y))$ (4)

Theorem 2.25.B

Theorem 2.25.B.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) is analytic in a given domain D and that |f(z)| is constant throughout D. Then f is constant throughout D.

Proof. Let |f(z)|=c for all $z\in D$, where c is a real nonnegative constant. If c=0, the result follows. If $c\neq 0$, then $f(z)\overline{f(z)}=|f(z)|^2=c^2$ and so $f(z)\neq 0$ in D. Hence $\overline{f(z)}=c^2/f(z)$ for all $z\in D$, and so $\overline{f(z)}$ is analytic in D by Lemma 2.24.A(ii). So by Theorem 2.25.A, f is constant throughout D.