## **Complex Variables**

### Chapter 2. Analytic Functions Section 2.25. Examples—Proofs of Theorems



# Table of contents





## Theorem 2.25.A

### Theorem 2.25.A.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) and its conjugate  $\overline{f(z)} = u(x, y) - iv(x, y)$  are both analytic in a given domain D. Then f is constant throughout D.

**Proof.** Write 
$$\overline{f(z)} = U(x, y) + iV(x, y)$$
, so that

$$U(x,y) = u(x,y)$$
 and  $V(x,y) = -v(x,y)$ . (1)

Since f is analytic in D then the Cauchy-Riemann equations are satisfied, by Theorem 2.21.A, and so

$$u_x(x,y) = v_y(x,y)$$
 and  $u_y(x,y) = -v_x(x,y)$  (2)

for all (x, y) in D.

## Theorem 2.25.A

### Theorem 2.25.A.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) and its conjugate  $\overline{f(z)} = u(x, y) - iv(x, y)$  are both analytic in a given domain D. Then f is constant throughout D.

**Proof.** Write 
$$\overline{f(z)} = U(x, y) + iV(x, y)$$
, so that

$$U(x,y) = u(x,y)$$
 and  $V(x,y) = -v(x,y)$ . (1)

Since f is analytic in D then the Cauchy-Riemann equations are satisfied, by Theorem 2.21.A, and so

$$u_x(x,y) = v_y(x,y)$$
 and  $u_y(x,y) = -v_x(x,y)$  (2)

for all (x, y) in D. Since  $\overline{f}$  is analytic in D, then the Cauchy-Riemann equations also give  $U_x(x, y) = V_y(x, y)$  and  $U_y(x, y) = -V_x(x, y)$  for all (x, y) in D. By equations (1), we therefore have throughout D that

$$u_x(x,y) = -v_y(x,y)$$
 and  $u_y(x,y) = -(-v_x(x,y))$  (4)

## Theorem 2.25.A

### Theorem 2.25.A.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) and its conjugate  $\overline{f(z)} = u(x, y) - iv(x, y)$  are both analytic in a given domain D. Then f is constant throughout D.

**Proof.** Write 
$$\overline{f(z)} = U(x, y) + iV(x, y)$$
, so that

$$U(x,y) = u(x,y)$$
 and  $V(x,y) = -v(x,y)$ . (1)

Since f is analytic in D then the Cauchy-Riemann equations are satisfied, by Theorem 2.21.A, and so

$$u_x(x,y) = v_y(x,y)$$
 and  $u_y(x,y) = -v_x(x,y)$  (2)

for all (x, y) in *D*. Since  $\overline{f}$  is analytic in *D*, then the Cauchy-Riemann equations also give  $U_x(x, y) = V_y(x, y)$  and  $U_y(x, y) = -V_x(x, y)$  for all (x, y) in *D*. By equations (1), we therefore have throughout *D* that

$$u_x(x,y) = -v_y(x,y)$$
 and  $u_y(x,y) = -(-v_x(x,y))$  (4)

# Theorem 2.25.A (continued)

### Theorem 2.25.A.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) and its conjugate  $\overline{f(z)} = u(x, y) - iv(x, y)$  are both analytic in a given domain D. Then f is constant throughout D.

**Proof (continued).** Throughout *D* we have:

$$u_x(x,y) = v_y(x,y)$$
 and  $u_y(x,y) = -v_x(x,y)$  (2)

$$u_x(x,y) = -v_y(x,y)$$
 and  $u_y(x,y) = v_x(x,y)$  (4)

Adding the respective sides of the first equations in (2) and (4) yields  $u_x = 0$  on *D*. Subtracting the respective sides of the second equations in (2) and (4) yields  $v_x = 0$  on *D*.

# Theorem 2.25.A (continued)

### Theorem 2.25.A.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) and its conjugate  $\overline{f(z)} = u(x, y) - iv(x, y)$  are both analytic in a given domain D. Then f is constant throughout D.

**Proof (continued).** Throughout *D* we have:

$$u_x(x,y) = v_y(x,y)$$
 and  $u_y(x,y) = -v_x(x,y)$  (2)

$$u_x(x,y) = -v_y(x,y)$$
 and  $u_y(x,y) = v_x(x,y)$  (4)

Adding the respective sides of the first equations in (2) and (4) yields  $u_x = 0$  on *D*. Subtracting the respective sides of the second equations in (2) and (4) yields  $v_x = 0$  on *D*. So by Theorem 2.21.A,  $f'(z) = u_x(x, y) + iv_x(x, y) = 0$  and so by Theorem 2.24.A, *f* is constant on *D*.

# Theorem 2.25.A (continued)

### Theorem 2.25.A.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) and its conjugate  $\overline{f(z)} = u(x, y) - iv(x, y)$  are both analytic in a given domain D. Then f is constant throughout D.

**Proof (continued).** Throughout *D* we have:

$$u_x(x,y) = v_y(x,y)$$
 and  $u_y(x,y) = -v_x(x,y)$  (2)

$$u_x(x,y) = -v_y(x,y) \text{ and } u_y(x,y) = v_x(x,y)$$
 (4)

Adding the respective sides of the first equations in (2) and (4) yields  $u_x = 0$  on D. Subtracting the respective sides of the second equations in (2) and (4) yields  $v_x = 0$  on D. So by Theorem 2.21.A,  $f'(z) = u_x(x, y) + iv_x(x, y) = 0$  and so by Theorem 2.24.A, f is constant on D.

## Theorem 2.25.B

#### Theorem 2.25.B.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) is analytic in a given domain D and that |f(z)| is constant throughout D. Then f is constant throughout D.

**Proof.** Let |f(z)| = c for all  $z \in D$ , where c is a real nonnegative constant. If c = 0, the result follows. If  $c \neq 0$ , then  $f(z)\overline{f(z)} = |f(z)|^2 = c^2$  and so  $f(z) \neq 0$  in D. Hence  $\overline{f(z)} = c^2/f(z)$  for all  $z \in D$ , and so  $\overline{f(z)}$  is analytic in D by Lemma 2.24.A(ii).

## Theorem 2.25.B

#### Theorem 2.25.B.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) is analytic in a given domain D and that |f(z)| is constant throughout D. Then f is constant throughout D.

**Proof.** Let |f(z)| = c for all  $z \in D$ , where c is a real nonnegative constant. If c = 0, the result follows. If  $c \neq 0$ , then  $f(z)\overline{f(z)} = |f(z)|^2 = c^2$  and so  $f(z) \neq 0$  in D. Hence  $\overline{f(z)} = c^2/f(z)$  for all  $z \in D$ , and so  $\overline{f(z)}$  is analytic in D by Lemma 2.24.A(ii). So by Theorem 2.25.A, f is constant throughout D.

## Theorem 2.25.B

#### Theorem 2.25.B.

Suppose that a function f(z) = f(x + iy) = u(x, y) + iv(x, y) is analytic in a given domain D and that |f(z)| is constant throughout D. Then f is constant throughout D.

**Proof.** Let |f(z)| = c for all  $z \in D$ , where c is a real nonnegative constant. If c = 0, the result follows. If  $c \neq 0$ , then  $f(z)\overline{f(z)} = |f(z)|^2 = c^2$  and so  $f(z) \neq 0$  in D. Hence  $\overline{f(z)} = c^2/f(z)$  for all  $z \in D$ , and so  $\overline{f(z)}$  is analytic in D by Lemma 2.24.A(ii). So by Theorem 2.25.A, f is constant throughout D.