Complex Variables

Chapter 2. Analytic Functions

Section 2.26. Harmonic Functions—Proofs of Theorems

Table of contents

(1) Theorem 2.26.1.
(2) Theorem 2.26.2.

Theorem 2.26.1

Theorem 2.26.1. If a function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then its component functions $u(x, y)$ and $v(x, y)$ are harmonic in D.

Proof. In Corollary 4.52.A, we will see that if $f(z)=u(x, y)+i v(x, y)$ is analytic at a point then $u(x, y)$ and $v(x, y)$ have continuous partial derivatives of all orders at the point. Since f is analytic in D then by the definition of "analytic" f is differentiable on D and so the Cauchy-Riemann equations are satisfied by Theorem 2.21.A. So $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ on D.

Theorem 2.26.1

Theorem 2.26.1. If a function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then its component functions $u(x, y)$ and $v(x, y)$ are harmonic in D.

Proof. In Corollary 4.52.A, we will see that if $f(z)=u(x, y)+i v(x, y)$ is analytic at a point then $u(x, y)$ and $v(x, y)$ have continuous partial derivatives of all orders at the point. Since f is analytic in D then by the definition of "analytic" f is differentiable on D and so the Cauchy-Riemann equations are satisfied by Theorem 2.21.A. So $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ on D. Differentiating the Cauchy-Riemann equations with respect to x gives

$$
\begin{equation*}
u_{x x}=v_{y x} \text { and } u_{y x}=-v_{x x} \tag{3}
\end{equation*}
$$

Differentiating the Cauchy-Riemann equations with respect to y gives

$$
\begin{equation*}
u_{x y}=v_{y y} \text { and } u_{y y}=-v_{x y} \tag{4}
\end{equation*}
$$

Theorem 2.26.1

Theorem 2.26.1. If a function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then its component functions $u(x, y)$ and $v(x, y)$ are harmonic in D.

Proof. In Corollary 4.52.A, we will see that if $f(z)=u(x, y)+i v(x, y)$ is analytic at a point then $u(x, y)$ and $v(x, y)$ have continuous partial derivatives of all orders at the point. Since f is analytic in D then by the definition of "analytic" f is differentiable on D and so the Cauchy-Riemann equations are satisfied by Theorem 2.21.A. So $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ on D. Differentiating the Cauchy-Riemann equations with respect to x gives

$$
\begin{equation*}
u_{x x}=v_{y x} \text { and } u_{y x}=-v_{x x} \tag{3}
\end{equation*}
$$

Differentiating the Cauchy-Riemann equations with respect to y gives

$$
\begin{equation*}
u_{x y}=v_{y y} \text { and } u_{y y}=-v_{x y} . \tag{4}
\end{equation*}
$$

Theorem 2.26.1 (continued)

Proof (continued).

$$
\begin{align*}
& u_{x x}=v_{y x} \text { and } u_{y x}=-v_{x x} \tag{3}\\
& u_{x y}=v_{y y} \text { and } u_{y y}=-v_{x y} \tag{4}
\end{align*}
$$

By "The Mixed Derivative Theorem (Clairaut's Theorem)" (see Theorem 2 of my Calculus 3 [MATH 2110] notes on 14.3. Partial Derivatives) if the first partials and the mixed second partials are continuous then the mixed second partials are equal. So $u_{x y}=u_{y x}$ and $v_{y x}=v_{x y}$.

Theorem 2.26.1 (continued)

Proof (continued).

$$
\begin{align*}
& u_{x x}=v_{y x} \text { and } u_{y x}=-v_{x x} . \tag{3}\\
& u_{x y}=v_{y y} \text { and } u_{y y}=-v_{x y} . \tag{4}
\end{align*}
$$

By "The Mixed Derivative Theorem (Clairaut's Theorem)" (see Theorem 2 of my Calculus 3 [MATH 2110] notes on 14.3. Partial Derivatives) if the first partials and the mixed second partials are continuous then the mixed second partials are equal. So $u_{x y}=u_{y x}$ and $v_{y x}=v_{x y}$. From (3) and (4) we have throughout D

$$
u_{x x}+u_{y y}=0 \text { and } v_{x x}+v_{y y}=0
$$

So $u(x, y)$ and $v(x, y)$ are harmonic in D.

Theorem 2.26.1 (continued)

Proof (continued).

$$
\begin{align*}
& u_{x x}=v_{y x} \text { and } u_{y x}=-v_{x x} . \tag{3}\\
& u_{x y}=v_{y y} \text { and } u_{y y}=-v_{x y} . \tag{4}
\end{align*}
$$

By "The Mixed Derivative Theorem (Clairaut's Theorem)" (see Theorem 2 of my Calculus 3 [MATH 2110] notes on 14.3. Partial Derivatives) if the first partials and the mixed second partials are continuous then the mixed second partials are equal. So $u_{x y}=u_{y x}$ and $v_{y x}=v_{x y}$. From (3) and (4) we have throughout D

$$
u_{x x}+u_{y y}=0 \text { and } v_{x x}+v_{y y}=0
$$

So $u(x, y)$ and $v(x, y)$ are harmonic in D.

Theorem 2.26.2

Theorem 2.26.2. A function $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is analytic in a domain D if and only if $v(x, y)$ is a harmonic conjugate of $u(x, y)$.

Proof. If v is a harmonic conjugate of u, then their first order partial derivatives satisfy the Cauchy-Riemann equations (by definition of harmonic conjugates) throughout D. So by Theorem 2.22.A, f is differentiable throughout D and so f is analytic on D.

Theorem 2.26.2

Theorem 2.26.2. A function $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is analytic in a domain D if and only if $v(x, y)$ is a harmonic conjugate of $u(x, y)$.

Proof. If v is a harmonic conjugate of u, then their first order partial derivatives satisfy the Cauchy-Riemann equations (by definition of harmonic conjugates) throughout D. So by Theorem 2.22.A, f is differentiable throughout D and so f is analytic on D.

If f is analytic in D, then by Theorem 2.26.1 u and v are harmonic in D.
By the definition of analytic, f is differentiable throughout D and so by Theorem 2.21.A, u and v satisfy the Cauchy-Riemann equations on D. So (by the definition of harmonic conjugates), v is a harmonic conjugate of

Theorem 2.26.2

Theorem 2.26.2. A function $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ is analytic in a domain D if and only if $v(x, y)$ is a harmonic conjugate of $u(x, y)$.

Proof. If v is a harmonic conjugate of u, then their first order partial derivatives satisfy the Cauchy-Riemann equations (by definition of harmonic conjugates) throughout D. So by Theorem 2.22.A, f is differentiable throughout D and so f is analytic on D.

If f is analytic in D, then by Theorem 2.26.1 u and v are harmonic in D. By the definition of analytic, f is differentiable throughout D and so by Theorem 2.21.A, u and v satisfy the Cauchy-Riemann equations on D. So (by the definition of harmonic conjugates), v is a harmonic conjugate of v.

