Complex Variables

Chapter 2. Analytic Functions

Section 2.27. Uniquely Determined Analytic Functions—Proofs of Theorems

Table of contents

(1) Lemma 2.27.A.
(2) Theorem 2.27.A.

Lemma 2.27.A

Lemma 2.27.A. Suppose that
(a) a function f is analytic throughout a domain D;
(b) $f(z)=0$ at each point z of a domain or line segment contained in D.

Then $f(z)=0$ in D; that is, $f(z)$ is identically equal to zero throughout D.
Proof. Let z_{0} be any point of the domain or line segment on which $f(z)=0$. Since D is a domain (an open connected set), then there is a polygonal line L consisting of a finite number of line segments joined end to end lying entirely in D that extends from z_{0} to any other point P in D (see Theorem II.2.3 in my online notes for Complex Analysis 1 [MATH 5510] on II.2. Connectedness; this was also used in the proof of Theorem 2.24.A).

Lemma 2.27.A

Lemma 2.27.A. Suppose that
(a) a function f is analytic throughout a domain D;
(b) $f(z)=0$ at each point z of a domain or line segment contained in D.

Then $f(z)=0$ in D; that is, $f(z)$ is identically equal to zero throughout D.
Proof. Let z_{0} be any point of the domain or line segment on which $f(z)=0$. Since D is a domain (an open connected set), then there is a polygonal line L consisting of a finite number of line segments joined end to end lying entirely in D that extends from z_{0} to any other point P in D (see Theorem II.2.3 in my online notes for Complex Analysis 1 [MATH 5510] on II.2. Connectedness; this was also used in the proof of Theorem 2.24.A). Let d be the shortest distance from points on L to the boundary of D (that is, d is the distance from the set of points comprising the boundary of D and the set of points comprising the polygonal line; there is a "shortest" distance since the polygonal line is a compact set;

Lemma 2.27.A

Lemma 2.27.A. Suppose that
(a) a function f is analytic throughout a domain D;
(b) $f(z)=0$ at each point z of a domain or line segment contained in D.

Then $f(z)=0$ in D; that is, $f(z)$ is identically equal to zero throughout D.
Proof. Let z_{0} be any point of the domain or line segment on which $f(z)=0$. Since D is a domain (an open connected set), then there is a polygonal line L consisting of a finite number of line segments joined end to end lying entirely in D that extends from z_{0} to any other point P in D (see Theorem II.2.3 in my online notes for Complex Analysis 1 [MATH 5510] on II.2. Connectedness; this was also used in the proof of Theorem 2.24.A). Let d be the shortest distance from points on L to the boundary of D (that is, d is the distance from the set of points comprising the boundary of D and the set of points comprising the polygonal line; there is a "shortest" distance since the polygonal line is a compact set; ...

Lemma 2.27.A (continued)

Proof (continued). ... see my online class notes for Complex Analysis 1 [MATH 5510] on II.5. Continuity), unless D is the entire complex plane; in that case, d may be any positive real number. We then form a finite sequence of points $z_{0}, z_{1}, z_{2}, \ldots, z_{n-1}, z_{n}=P$ where each point lies on polygonal line L and $\left|z_{k}-z_{k-1}\right|<d$ for $k=1,2, \ldots, n$ (such finite collection of points exists because L is a compact set). See Figure 2.33.

Lemma 2.27.A (continued)

Proof (continued). ... see my online class notes for Complex Analysis 1 [MATH 5510] on II.5. Continuity), unless D is the entire complex plane; in that case, d may be any positive real number. We then form a finite sequence of points $z_{0}, z_{1}, z_{2}, \ldots, z_{n-1}, z_{n}=P$ where each point lies on polygonal line L and $\left|z_{k}-z_{k-1}\right|<d$ for $k=1,2, \ldots, n$ (such finite collection of points exists because L is a compact set). See Figure 2.33.

Lemma 2.27.A (continued)

Proof (continued). ... see my online class notes for Complex Analysis 1 [MATH 5510] on II.5. Continuity), unless D is the entire complex plane; in that case, d may be any positive real number. We then form a finite sequence of points $z_{0}, z_{1}, z_{2}, \ldots, z_{n-1}, z_{n}=P$ where each point lies on polygonal line L and $\left|z_{k}-z_{k-1}\right|<d$ for $k=1,2, \ldots, n$ (such finite collection of points exists because L is a compact set). See Figure 2.33.

Construct a sequence of neighborhoods $N_{0}, N_{1}, \ldots, N_{n-1}, N_{n}$ where N_{k} is centered at z_{k} and has radius d (so $N_{k}=\left\{z \in \mathbb{C}| | z-z_{k} \mid<d\right\}$). Then all these neighborhoods are contained in D and that $z_{k} \in N_{k-1}$ for $k=1,2$,

Lemma 2.27.A (continued)

Proof (continued). ... see my online class notes for Complex Analysis 1 [MATH 5510] on II.5. Continuity), unless D is the entire complex plane; in that case, d may be any positive real number. We then form a finite sequence of points $z_{0}, z_{1}, z_{2}, \ldots, z_{n-1}, z_{n}=P$ where each point lies on polygonal line L and $\left|z_{k}-z_{k-1}\right|<d$ for $k=1,2, \ldots, n$ (such finite collection of points exists because L is a compact set). See Figure 2.33.

FIGURE 33
Construct a sequence of neighborhoods $N_{0}, N_{1}, \ldots, N_{n-1}, N_{n}$ where N_{k} is centered at z_{k} and has radius d (so $N_{k}=\left\{z \in \mathbb{C}| | z-z_{k} \mid<d\right\}$). Then all these neighborhoods are contained in D and that $z_{k} \in N_{k-1}$ for $k=1,2, \ldots, n$.

Lemma 2.27.A (continued)

Proof (continued). We now borrow a result from Section 6.75:
Theorem 6.75.3. Given a function f and a point z_{0}, suppose that
(a) f is analytic throughout a neighborhood N_{0} of z_{0};
(b) $f(z)=0$ at each point z of a domain D or line segment L containing z_{0}.
Then $f(z) \equiv 0$ in N_{0}; that is, $f(z)$ is identically zero throughout N_{0}.
Since z_{0} is a point of the domain or line segment on which $f(z)=0$, so N_{0} contains a domain or line segment on which $f(z)=0$ (namely, the intersection of N_{0} with the domain or line segment). By Theorem 6.75.3, $f(z) \equiv 0$ on N_{0}. Next, $N_{0} \cap N_{1}$ is a domain in N_{1} on which $f(z)=0$, so by Theorem 6.75.3 $f(z) \equiv 0$ on N_{1}. Similarly, $f(z) \equiv 0$ on $N_{2} \cup N_{3} \cup \cdots \cup N_{n}$. Therefore, $f\left(z_{n}\right)=f(P)=0$. Since P was an arbitrary point of D, then $f(z) \equiv 0$ throughout D.

Lemma 2.27.A (continued)

Proof (continued). We now borrow a result from Section 6.75:
Theorem 6.75.3. Given a function f and a point z_{0}, suppose that
(a) f is analytic throughout a neighborhood N_{0} of z_{0};
(b) $f(z)=0$ at each point z of a domain D or line segment L containing z_{0}.
Then $f(z) \equiv 0$ in N_{0}; that is, $f(z)$ is identically zero throughout N_{0}.
Since z_{0} is a point of the domain or line segment on which $f(z)=0$, so N_{0} contains a domain or line segment on which $f(z)=0$ (namely, the intersection of N_{0} with the domain or line segment). By Theorem 6.75.3, $f(z) \equiv 0$ on N_{0}. Next, $N_{0} \cap N_{1}$ is a domain in N_{1} on which $f(z)=0$, so by Theorem 6.75.3 $f(z) \equiv 0$ on N_{1}. Similarly, $f(z) \equiv 0$ on $N_{2} \cup N_{3} \cup \cdots \cup N_{n}$. Therefore, $f\left(z_{n}\right)=f(P)=0$. Since P was an arbitrary point of D, then $f(z) \equiv 0$ throughout D.

Theorem 2.27.A

Theorem 2.27.A. A function that is analytic in a domain D is uniquely determined over D by its values in a domain, or along a line segment, contained in D.

Proof. Suppose two functions f and g are analytic in domain D and that $f(z)=g(z)$ for all z in some domain or line segment contained in D. Then $h(z)=f(z)-g(z)$ is analytic in F and $h(z)=0$ throughout some domain of line segment contained in D. By Lemma 2.27.A, $h(z) \equiv 0$ throughout D, and so $f(z)=g(z)$ for all $z \in D$.

Theorem 2.27.A

Theorem 2.27.A. A function that is analytic in a domain D is uniquely determined over D by its values in a domain, or along a line segment, contained in D.

Proof. Suppose two functions f and g are analytic in domain D and that $f(z)=g(z)$ for all z in some domain or line segment contained in D. Then $h(z)=f(z)-g(z)$ is analytic in F and $h(z)=0$ throughout some domain of line segment contained in D. By Lemma 2.27.A, $h(z) \equiv 0$ throughout D, and so $f(z)=g(z)$ for all $z \in D$.

