Complex Variables

Chapter 2. Analytic Functions

Section 2.28. Reflection Principle—Proofs of Theorems

Table of contents

(1) Theorem 2.28.A. Reflection Principle.

Theorem 2.28.A

Theorem 2.28.A. Reflection Principle. Suppose that a function f is analytic in some domain D which contains a segment of the real axis and whose lower half is the reflection of the upper half with respect to that axis. Then $\overline{f(z)}=f(\bar{z})$ for each point z in the domain if and only if $f(x)$ is real for each point x on that segment.

$$
\begin{aligned}
& \text { Proof. Suppose } f(x) \text { is real for each real } x \text { in the segment. Let } \\
& f(z)=f(x+i y)=u(x, y)+i v(x, y) \text { and } \\
& F(z)=\bar{f}(z)=\overline{f(\bar{z})}=U(x, y)+i V(x, y) \text {. So } \\
& \quad \overline{f(\bar{z})}=U(x, y)+i V(x, y)=u(x,-y)-i v(x,-y) .
\end{aligned}
$$

Theorem 2.28.A

Theorem 2.28.A. Reflection Principle. Suppose that a function f is analytic in some domain D which contains a segment of the real axis and whose lower half is the reflection of the upper half with respect to that axis. Then $f(z)=f(\bar{z})$ for each point z in the domain if and only if $f(x)$ is real for each point x on that segment.

Proof. Suppose $f(x)$ is real for each real x in the segment. Let $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ and $F(z)=\bar{f}(z)=\overline{f(\bar{z})}=U(x, y)+i V(x, y)$. So

$$
\overline{f(\bar{z})}=U(x, y)+i V(x, y)=u(x,-y)-i v(x,-y)
$$

Since f is analytic on D then $u(x, y)$ and $v(x, y)$ satisfy the Cauchy-Riemann equations by Theorem 2.21.A and so $u_{x}(x, y)=v_{y}(x, y)$ and $u_{y}(x, y)=-v_{x}(x, y)$. Since $U(x, y)=-u(x,-y)$ then $U_{x}(x, y)=u_{x}(x,-y)$ and $U_{y}(x, y)=-u_{y}(x,-y)$.

Theorem 2.28.A

Theorem 2.28.A. Reflection Principle. Suppose that a function f is analytic in some domain D which contains a segment of the real axis and whose lower half is the reflection of the upper half with respect to that axis. Then $\overline{f(z)}=f(\bar{z})$ for each point z in the domain if and only if $f(x)$ is real for each point x on that segment.

Proof. Suppose $f(x)$ is real for each real x in the segment. Let $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ and $F(z)=\bar{f}(z)=\overline{f(\bar{z})}=U(x, y)+i V(x, y)$. So

$$
\overline{f(\bar{z})}=U(x, y)+i V(x, y)=u(x,-y)-i v(x,-y)
$$

Since f is analytic on D then $u(x, y)$ and $v(x, y)$ satisfy the Cauchy-Riemann equations by Theorem 2.21.A and so $u_{x}(x, y)=v_{y}(x, y)$ and $u_{y}(x, y)=-v_{x}(x, y)$. Since $U(x, y)=-u(x,-y)$ then $U_{x}(x, y)=u_{x}(x,-y)$ and $U_{y}(x, y)=-u_{y}(x,-y)$. Since

Theorem 2.28.A

Theorem 2.28.A. Reflection Principle. Suppose that a function f is analytic in some domain D which contains a segment of the real axis and whose lower half is the reflection of the upper half with respect to that axis. Then $\overline{f(z)}=f(\bar{z})$ for each point z in the domain if and only if $f(x)$ is real for each point x on that segment.

Proof. Suppose $f(x)$ is real for each real x in the segment. Let $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ and $F(z)=\bar{f}(z)=\overline{f(\bar{z})}=U(x, y)+i V(x, y)$. So

$$
\overline{f(\bar{z})}=U(x, y)+i V(x, y)=u(x,-y)-i v(x,-y)
$$

Since f is analytic on D then $u(x, y)$ and $v(x, y)$ satisfy the Cauchy-Riemann equations by Theorem 2.21.A and so $u_{x}(x, y)=v_{y}(x, y)$ and $u_{y}(x, y)=-v_{x}(x, y)$. Since $U(x, y)=-u(x,-y)$ then $U_{x}(x, y)=u_{x}(x,-y)$ and $U_{y}(x, y)=-u_{y}(x,-y)$. Since $V(x, y)=-v(x,-y)$ then $V_{x}(x, y)=-v_{x}(x,-y)$ and $V_{y}(x, y)=v_{y}(x,-y)$.

Theorem 2.28.A (continued 1)

Proof (continued). Next, $u_{x}(x, y)=v_{y}(x, y)$ implies $u_{x}(x,-y)=v_{y}(x,-y)$ or that $U_{x}(x, y)=V_{y}(x, y)$. Similarly $u_{x}(x, y)=-v_{x}(x, y)$ implies that $u_{y}(x,-y)=-v_{x}(x,-y)$ or that $-U_{y}(x, y)=V_{x}(x, y)$. So $U(x, y)$ and $V(x, y)$ satisfy the
Cauchy-Riemann equations and have continuous partial derivatives (since u and v have continuous partial derivatives) throughout D, therefore by Theorem 2.22.A $F(z)=\overline{f(\bar{z})}$ is analytic in D.

Theorem 2.28.A (continued 1)

Proof (continued). Next, $u_{x}(x, y)=v_{y}(x, y)$ implies $u_{x}(x,-y)=v_{y}(x,-y)$ or that $U_{x}(x, y)=V_{y}(x, y)$. Similarly $u_{x}(x, y)=-v_{x}(x, y)$ implies that $u_{y}(x,-y)=-v_{x}(x,-y)$ or that $-U_{y}(x, y)=V_{x}(x, y)$. So $U(x, y)$ and $V(x, y)$ satisfy the
Cauchy-Riemann equations and have continuous partial derivatives (since u and v have continuous partial derivatives) throughout D, therefore by Theorem 2.22.A $F(z)=\overline{f(\bar{z})}$ is analytic in D.

Since $f(x)=f(x+i 0)$ is real on the segment of the real axis lying in D, then $v(x, 0)=0$ for all x on the segment. Therefore, for such x,

$$
F(x)=U(x, 0)+i V(x, 0)=u(x, 0)-i v(x, 0)=u(x, 0)=f(x)
$$

So for x on the segment of the real axis, $F(z)=f(z)$.

Theorem 2.28.A (continued 1)

Proof (continued). Next, $u_{x}(x, y)=v_{y}(x, y)$ implies $u_{x}(x,-y)=v_{y}(x,-y)$ or that $U_{x}(x, y)=V_{y}(x, y)$. Similarly $u_{x}(x, y)=-v_{x}(x, y)$ implies that $u_{y}(x,-y)=-v_{x}(x,-y)$ or that $-U_{y}(x, y)=V_{x}(x, y)$. So $U(x, y)$ and $V(x, y)$ satisfy the
Cauchy-Riemann equations and have continuous partial derivatives (since u and v have continuous partial derivatives) throughout D, therefore by Theorem 2.22.A $F(z)=\overline{f(\bar{z})}$ is analytic in D.

Since $f(x)=f(x+i 0)$ is real on the segment of the real axis lying in D, then $v(x, 0)=0$ for all x on the segment. Therefore, for such x,

$$
F(x)=U(x, 0)+i V(x, 0)=u(x, 0)-i v(x, 0)=u(x, 0)=f(x)
$$

So for x on the segment of the real axis, $F(z)=f(z)$. By Theorem 2.27.A we have that $F(z)=f(z)$ for all $z \in D$. Hence $f(\bar{z})=f(z)$ for all $z \in D$. Taking conjugates of both sides, we have $f(\bar{z})=f(z)$ for all $z \in D$, as claimed.

Theorem 2.28.A (continued 1)

Proof (continued). Next, $u_{x}(x, y)=v_{y}(x, y)$ implies
$u_{x}(x,-y)=v_{y}(x,-y)$ or that $U_{x}(x, y)=V_{y}(x, y)$. Similarly $u_{x}(x, y)=-v_{x}(x, y)$ implies that $u_{y}(x,-y)=-v_{x}(x,-y)$ or that $-U_{y}(x, y)=V_{x}(x, y)$. So $U(x, y)$ and $V(x, y)$ satisfy the
Cauchy-Riemann equations and have continuous partial derivatives (since u and v have continuous partial derivatives) throughout D, therefore by Theorem 2.22.A $F(z)=\overline{f(\bar{z})}$ is analytic in D.

Since $f(x)=f(x+i 0)$ is real on the segment of the real axis lying in D, then $v(x, 0)=0$ for all x on the segment. Therefore, for such x,

$$
F(x)=U(x, 0)+i V(x, 0)=u(x, 0)-i v(x, 0)=u(x, 0)=f(x) .
$$

So for x on the segment of the real axis, $F(z)=f(z)$. By Theorem 2.27.A we have that $F(z)=f(z)$ for all $z \in D$. Hence $\overline{f(z)}=f(z)$ for all $z \in D$. Taking conjugates of both sides, we have $f(\bar{z})=\bar{f}(z)$ for all $z \in D$, as claimed.

Theorem 2.28.A (continued 2)

Theorem 2.28.A. Reflection Principle. Suppose that a function f is analytic in some domain D which contains a segment of the real axis and whose lower half is the reflection of the upper half with respect to that axis. Then $\overline{f(z)}=f(\bar{z})$ for each point z in the domain if and only if $f(x)$ is real for each point x is that segment.

Proof (continued). Conversely, suppose $f(\bar{z})=\overline{f(z)}$ for all $z \in D$. With the notation above, we have

$$
f(\bar{z})=u(x,-y)+i v(x,-y)=u(x, y)-i v(x, y)=\overline{f(z)}
$$

With $z=x+i y=x+i 0$ real and in D we then have
$u(x, 0)+i v(x, 0)=u(x, 0)-i v(x, 0)$ and so $v(x, 0)=-v(x, 0)$ or $v(x, 0)=0$. That is, for any real $z=x \in D$ we have that $f(z)=f(x)=u(x, 0)$ is real, as claimed.

Theorem 2.28.A (continued 2)

Theorem 2.28.A. Reflection Principle. Suppose that a function f is analytic in some domain D which contains a segment of the real axis and whose lower half is the reflection of the upper half with respect to that axis. Then $\overline{f(z)}=f(\bar{z})$ for each point z in the domain if and only if $f(x)$ is real for each point x is that segment.

Proof (continued). Conversely, suppose $f(\bar{z})=\overline{f(z)}$ for all $z \in D$. With the notation above, we have

$$
f(\bar{z})=u(x,-y)+i v(x,-y)=u(x, y)-i v(x, y)=\overline{f(z)}
$$

With $z=x+i y=x+i 0$ real and in D we then have $u(x, 0)+i v(x, 0)=u(x, 0)-i v(x, 0)$ and so $v(x, 0)=-v(x, 0)$ or $v(x, 0)=0$. That is, for any real $z=x \in D$ we have that $f(z)=f(x)=u(x, 0)$ is real, as claimed.

