Complex Variables

Chapter 3. Elementary Functions

Section 3.29. The Exponential Function-Proofs of Theorems

Table of contents

(1) Lemma 3.29.A
(2) Corollary 3.29.A

Lemma 3.29

Lemma 3.29. A. For all $z_{1}, z_{2} \in \mathbb{C}$ we have $e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$.
Proof. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$. Then, as in the proof of Theorem 1.7.1,

$$
\begin{aligned}
e^{z_{1}} e^{z_{2}}= & \left(e^{x_{1}}\left(\cos y_{1}+i \sin y_{1}\right)\right)\left(e^{x_{2}}\left(\cos y_{2}+i \sin y_{2}\right)\right) \\
= & e^{x_{1}+x_{2}}\left(\cos y_{1} \cos y_{2}-\sin y_{1} \sin y_{2}\right) \\
& +e^{x_{1}+x_{2}} i\left(\sin y_{1} \cos y_{2}+\cos y_{1} \sin y_{2}\right) \\
= & e^{x_{1}+x_{2}}\left(\cos \left(y_{1}+y_{2}\right)+i \sin \left(y_{1}+y_{2}\right)\right) \operatorname{since} \\
& \cos \left(y_{1} \pm y_{2}\right)=\cos y_{1} \cos y_{2} \mp \sin y_{1} \sin y_{2} \\
& \text { and } \sin \left(y_{1} \pm y_{2}\right)=\sin y_{1} \cos y_{2} \pm \cos y_{1} \sin y_{2} \\
= & e^{\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)}=e^{z_{1}+z_{2}} .
\end{aligned}
$$

Lemma 3.29

Lemma 3.29. A. For all $z_{1}, z_{2} \in \mathbb{C}$ we have $e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$.
Proof. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$. Then, as in the proof of Theorem 1.7.1,

$$
\begin{aligned}
e^{z_{1}} e^{z_{2}}= & \left(e^{x_{1}}\left(\cos y_{1}+i \sin y_{1}\right)\right)\left(e^{x_{2}}\left(\cos y_{2}+i \sin y_{2}\right)\right) \\
= & e^{x_{1}+x_{2}}\left(\cos y_{1} \cos y_{2}-\sin y_{1} \sin y_{2}\right) \\
& +e^{x_{1}+x_{2}} i\left(\sin y_{1} \cos y_{2}+\cos y_{1} \sin y_{2}\right) \\
= & e^{x_{1}+x_{2}}\left(\cos \left(y_{1}+y_{2}\right)+i \sin \left(y_{1}+y_{2}\right)\right) \operatorname{since} \\
& \cos \left(y_{1} \pm y_{2}\right)=\cos y_{1} \cos y_{2} \mp \sin y_{1} \sin y_{2} \\
= & e^{\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)}=e^{z_{1}+z_{2}} .
\end{aligned}
$$

Corollary 3.29.A

Corollary 3.29.A. For all $z_{1}, z_{2} \in \mathbb{C}$ we have $e^{z_{1}} / e^{z_{2}}=e^{z_{1}-z_{2}}$. Also, $1 / e^{z}=\left(e^{z}\right)^{-1}=e^{-z}$.

Proof. By Lemma 3.29.A, we have $e^{z_{1}-z_{2}} e^{z_{2}}=e^{\left(z_{1}-z_{2}\right)+z_{2}}=e^{z_{1}}$ and rearranging this gives $e^{z_{1}} / e^{z_{2}}=e^{z_{1}-z_{2}}$, as claimed. Since $e^{0}=1$, this implies (with $z_{1}=0$ and $z_{2}=z$) that $1 / e^{z}=e^{0} / e^{z}=e^{0-z}=e^{-z}$ (notice $1 / e^{z}=\left(e^{z}\right)^{-1}$ are just alternative notations for multiplicative inverses, whereas e^{-z} denotes the exponential function evaluated at $-z$; this result shows the relationship between the multiplicative inverse and the value of e^{-z}).

Corollary 3.29.A

Corollary 3.29.A. For all $z_{1}, z_{2} \in \mathbb{C}$ we have $e^{z_{1}} / e^{z_{2}}=e^{z_{1}-z_{2}}$. Also, $1 / e^{z}=\left(e^{z}\right)^{-1}=e^{-z}$.

Proof. By Lemma 3.29.A, we have $e^{z_{1}-z_{2}} e^{z_{2}}=e^{\left(z_{1}-z_{2}\right)+z_{2}}=e^{z_{1}}$ and rearranging this gives $e^{z_{1}} / e^{z_{2}}=e^{z_{1}-z_{2}}$, as claimed. Since $e^{0}=1$, this implies (with $z_{1}=0$ and $z_{2}=z$) that $1 / e^{z}=e^{0} / e^{z}=e^{0-z}=e^{-z}$ (notice $1 / e^{z}=\left(e^{z}\right)^{-1}$ are just alternative notations for multiplicative inverses, whereas e^{-z} denotes the exponential function evaluated at $-z$; this result shows the relationship between the multiplicative inverse and the value of e^{-z}).

