Complex Variables

Chapter 3. Elementary Functions

Section 3.32. Some Identities Involving Logarithms—Proofs of Theorems

Table of contents

(1) Lemma 3.32.A.
(2) Lemma 3.32.C
(3) Lemma 3.32.D

Lemma 3.32.A

Lemma 3.32.A. For the multiple-valued "function" $\log z$ defined in Section 3.30, we have for all nonzero $z_{1}, z_{2} \in \mathbb{C}$ that

$$
\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}
$$

Proof. Since we have by definition, $\log z=\ln |z|+\operatorname{iarg}(z)$, and by Lemma 1.8.1, $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$, then

$$
\begin{array}{r}
\log \left(z_{1} z_{2}\right)=\ln \left|z_{1} z_{2}\right|+i \arg \left(z_{1} z_{2}\right)=\ln \left|z_{1}\right|+\ln \left|z_{2}\right|+\operatorname{iarg}\left(z_{1}\right)+\operatorname{iarg}\left(z_{2}\right) \\
=\left(\ln \left|z_{1}\right|+i \arg \left(z_{1}\right)\right)+\left(\ln \left|z_{2}\right|+i \arg \left(z_{2}\right)\right)=\log z_{1}+\log z_{2} .
\end{array}
$$

Lemma 3.32.A

Lemma 3.32.A. For the multiple-valued "function" $\log z$ defined in Section 3.30, we have for all nonzero $z_{1}, z_{2} \in \mathbb{C}$ that

$$
\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}
$$

Proof. Since we have by definition, $\log z=\ln |z|+\operatorname{iarg}(z)$, and by Lemma 1.8.1, $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$, then

$$
\begin{array}{r}
\log \left(z_{1} z_{2}\right)=\ln \left|z_{1} z_{2}\right|+\operatorname{iarg}\left(z_{1} z_{2}\right)=\ln \left|z_{1}\right|+\ln \left|z_{2}\right|+\operatorname{iarg}\left(z_{1}\right)+\operatorname{iarg}\left(z_{2}\right) \\
=\left(\ln \left|z_{1}\right|+\operatorname{iarg}\left(z_{1}\right)\right)+\left(\ln \left|z_{2}\right|+\operatorname{iarg}\left(z_{2}\right)\right)=\log z_{1}+\log z_{2} .
\end{array}
$$

Lemma 3.32.C

Lemma 3.32.C. For any nonzero $z \in \mathbb{C}$, for all $n \in \mathbb{Z}$ we have $z^{n}=e^{n \log z}$.

Proof. First, for $z=r e^{i \theta}=|z| e^{i a r g} z$, notice that
$e^{\log z}=e^{\ln |z|+i \arg z}=e^{\ln |z|} e^{i \arg z}=|z| e^{i \arg z}=z$. So for $n \geq 0$ we have

$$
=e^{n \log z} \text { by Lemma 3.29.A. }
$$

Lemma 3.32.C

Lemma 3.32.C. For any nonzero $z \in \mathbb{C}$, for all $n \in \mathbb{Z}$ we have $z^{n}=e^{n \log z}$.

Proof. First, for $z=r e^{i \theta}=|z| e^{i a r g} z$, notice that $e^{\log z}=e^{\ln |z|+i \arg z}=e^{\ln |z|} e^{\operatorname{iarg} z}=|z| e^{i \operatorname{iarg} z}=z$. So for $n \geq 0$ we have

$$
\begin{aligned}
z^{n} & =\left(e^{\log z}\right)^{n}=\underbrace{\left(e^{\log z}\right)\left(e^{\log z}\right) \cdots\left(e^{\log z}\right)}_{n \text { times }} \\
& =e^{n \log z} \text { by Lemma 3.29.A. }
\end{aligned}
$$

For $n<0$ we have

Lemma 3.32.C

Lemma 3.32.C. For any nonzero $z \in \mathbb{C}$, for all $n \in \mathbb{Z}$ we have $z^{n}=e^{n \log z}$.

Proof. First, for $z=r e^{i \theta}=|z| e^{i a r g} z$, notice that $e^{\log z}=e^{\ln |z|+i \arg z}=e^{\ln |z|} e^{\operatorname{iarg} z}=|z| e^{i \arg z}=z$. So for $n \geq 0$ we have

$$
\begin{aligned}
z^{n} & =\left(e^{\log z}\right)^{n}=\underbrace{\left(e^{\log z}\right)\left(e^{\log z}\right) \cdots\left(e^{\log z}\right)}_{n \text { times }} \\
& =e^{n \log z} \text { by Lemma 3.29.A. }
\end{aligned}
$$

For $n<0$ we have

$$
\begin{aligned}
z^{n} & =\left(e^{\log z}\right)^{n}=\left(e^{-\log z}\right)^{-n}=\underbrace{\left(e^{-\log z}\right)\left(e^{-\log z}\right) \cdots\left(e^{-\log z}\right)}_{-n \text { times }} \\
& =e^{-(-n) \log z} \text { by Lemma 3.29.A } \\
& =e^{n \log z} .
\end{aligned}
$$

Lemma 3.32.D

Lemma 3.32.D. For any nonzero $z \in \mathbb{C}$, we have that for $n=1,2,3, \ldots$

$$
\exp \left(\frac{1}{n} \log z\right)
$$

is a set consisting of n distinct elements each of which is an nth root of z (that is, when raised to the nth power gives z).

Proof. Let $z=r \exp (i \Theta)=|z| \exp (i \Theta)$ where Θ is the principal value of $\arg (z)$ (that is, $\Theta \in \arg (z)$ and $-\pi<\Theta \leq \pi)$. Then

Lemma 3.32.D

Lemma 3.32.D. For any nonzero $z \in \mathbb{C}$, we have that for $n=1,2,3, \ldots$

$$
\exp \left(\frac{1}{n} \log z\right)
$$

is a set consisting of n distinct elements each of which is an nth root of z (that is, when raised to the nth power gives z).

Proof. Let $z=r \exp (i \Theta)=|z| \exp (i \Theta)$ where Θ is the principal value of $\arg (z)$ (that is, $\Theta \in \arg (z)$ and $-\pi<\Theta \leq \pi)$. Then

$$
\begin{align*}
\exp \left(\frac{1}{n} \log z\right) & =\exp \left(\frac{1}{n}(\ln |z|+i(\Theta+2 k \pi))\right) \text { where } k \in \mathbb{Z} \\
& =\exp \left(\frac{1}{n} \ln |z|+i \frac{\Theta+2 k \pi}{n}\right) \\
& =\exp \left(\frac{1}{n} \ln |z|\right) \exp \left(i \frac{\Theta+2 k \pi}{n}\right) \text { by Lemma 3.29.A. } \tag{7}
\end{align*}
$$

Lemma 3.32.D (continued)

Proof (continued). Now
$\exp (i(\Theta / n+2 k \pi / n))=\cos (\Theta / n+2 k \pi / n)+i \sin (\Theta / n+2 k \pi / n)$ and this results in n distinct values as k ranges over the distinct values modulo n (say, $k=0,1, \ldots, n-1$). For each value given in (7), we have

$$
\begin{aligned}
{\left[\exp \left(\frac{1}{n} \log z\right)\right]^{n} } & =\left[\exp \left(\frac{1}{n} \ln |z|\right) \exp \left(i \frac{\Theta+2 k \pi}{n}\right)\right]^{n} \\
& =\left[\exp \left(\frac{1}{n} \ln |z|\right)\right]^{n}\left[\exp \left(i \frac{\Theta+2 k \pi}{n}\right)\right]^{n} \\
& =\exp (\ln |z|) \exp (i(\Theta+2 k \pi)) \text { by Lemma 3.29.A } \\
& =|z| e^{i(\Theta+2 k \pi)}=|z| e^{i \Theta}=z
\end{aligned}
$$

So the result follows, which we denote as $z^{1 / n}=\exp \left(\frac{1}{n} \log z\right)$

Lemma 3.32.D (continued)

Proof (continued). Now
$\exp (i(\Theta / n+2 k \pi / n))=\cos (\Theta / n+2 k \pi / n)+i \sin (\Theta / n+2 k \pi / n)$ and this results in n distinct values as k ranges over the distinct values modulo n (say, $k=0,1, \ldots, n-1$). For each value given in (7), we have

$$
\begin{aligned}
{\left[\exp \left(\frac{1}{n} \log z\right)\right]^{n} } & =\left[\exp \left(\frac{1}{n} \ln |z|\right) \exp \left(i \frac{\Theta+2 k \pi}{n}\right)\right]^{n} \\
& =\left[\exp \left(\frac{1}{n} \ln |z|\right)\right]^{n}\left[\exp \left(i \frac{\Theta+2 k \pi}{n}\right)\right]^{n} \\
& =\exp (\ln |z|) \exp (i(\Theta+2 k \pi)) \text { by Lemma 3.29.A } \\
& =|z| e^{i(\Theta+2 k \pi)}=|z| e^{i \Theta}=z .
\end{aligned}
$$

So the result follows, which we denote as $z^{1 / n}=\exp \left(\frac{1}{n} \log z\right)$.

