Complex Variables

Chapter 3. Elementary Functions

Section 3.33. Complex Exponents—Proofs of Theorems

Table of contents

(1) Theorem 3.33.A

Theorem 3.33.A

Theorem 3.33.A. For any branch of z^{c}, we have $\frac{d}{d z}\left[z^{c}\right]=c z^{c-1}$ where the branch of z^{c-1} is based on the same branch of the logarithm on which z^{c} is based.

Proof. Let $\log z$ represent some branch of the logarithm so that $\log z=\ln |z|+i \theta$ where $\theta \in \arg (z)$ and $\alpha<\theta<\alpha+2 \pi$ for some given α. Then

$$
\begin{aligned}
\frac{d}{d z}\left[z^{c}\right]= & \frac{d}{d z}[\exp (c \log z)] \\
= & c \frac{1}{z}[\exp (c \log z)] \text { since } \frac{d}{d z}[\log z]=1 / z \text { as shown in Note 3.31.A } \\
& \quad \text { and by the Chain Rule (Theorem 2.20.C) } \\
= & c \frac{\exp (c \log z)}{\exp (\log z)} \text { since } z=\exp (\log z) \text { as shown in Note 3.30.A }
\end{aligned}
$$

Theorem 3.33.A

Theorem 3.33.A. For any branch of z^{c}, we have $\frac{d}{d z}\left[z^{c}\right]=c z^{c-1}$ where the branch of z^{c-1} is based on the same branch of the logarithm on which z^{c} is based.

Proof. Let $\log z$ represent some branch of the logarithm so that $\log z=\ln |z|+i \theta$ where $\theta \in \arg (z)$ and $\alpha<\theta<\alpha+2 \pi$ for some given α. Then

$$
\begin{aligned}
\frac{d}{d z}\left[z^{c}\right]= & \frac{d}{d z}[\exp (c \log z)] \\
= & c \frac{1}{z}[\exp (c \log z)] \text { since } \frac{d}{d z}[\log z]=1 / z \text { as shown in Note 3.31.A } \\
& \text { and by the Chain Rule }(\text { Theorem 2.20.C }) \\
= & c \frac{\exp (c \log z)}{\exp (\log z)} \text { since } z=\exp (\log z) \text { as shown in Note 3.30.A } \\
= & \cdots
\end{aligned}
$$

Theorem 3.33.A (continued)

Theorem 3.33.A. For any branch of z^{c}, we have $\frac{d}{d z}\left[z^{c}\right]=c z^{c-1}$ where the branch of z^{c-1} is based on the same branch of the logarithm on which z^{c} is based.

Proof (continued). ...

$$
\begin{aligned}
\frac{d}{d z}\left[z^{c}\right]= & c \frac{\exp (c \log z)}{\exp (\log z)} \operatorname{since} z=\exp (\log z) \text { as shown in Note 3.30.A } \\
= & c \exp (c \log z) \exp (-\log z) \text { by Corollary 3.29.A } \\
= & c \exp (c \log z-\log z)=c \exp ((c-1) \log z) \text { by Lemma 3.29.A } \\
= & c z^{c-1} \text { for the branch of } z^{c-1} \text { based on } \\
& \text { the branch of the logarithm } \log z .
\end{aligned}
$$

