## Complex Variables

#### **Chapter 3. Elementary Functions**

Section 3.34. Trigonometric Functions—Proofs of Theorems



Complex Variables

January 15, 2020

1 / 6

#### Lemma 3.34.A

**Lemma 3.34.A.** The real and imaginary parts of  $\cos z$  and  $\sin z$  can be expressed in terms of  $\sin x$ ,  $\cos x$ ,  $\sinh y$ , and  $\cosh y$ , where z = x + iy, as:

 $\sin z = \sin x \cosh y + i \cos x \sinh y$  and  $\cos z = \cos x \cosh y - i \sin x \sinh y$ .

**Proof.** Let  $z_1 = x$  and  $z_2 = iy$ . Then by the summation equations we have

$$\sin z = \sin(x + iy) = \sin(z_1 + z_2)$$

$$= \sin z_1 \cos z_2 + \cos z_1 \sin z_2 = \sin x \cos iy + \cos x \sin iy$$

$$= \sin x \cosh y + \cos x (i \sinh y) \text{ since } \cos iy = \cosh y$$

$$= \sin x \cosh y + i \sin y$$

$$= \sin x \cosh y + i \cos x \sinh y$$

Complex Variables January 15, 2020 3 / 6

Lomma 2 24

## Lemma 3.34.A (continued)

**Lemma 3.34.A.** The real and imaginary parts of  $\cos z$  and  $\sin z$  can be expressed in terms of  $\sin x$ ,  $\cos x$ ,  $\sinh y$ , and  $\cosh y$ , where z = x + iy, as:

 $\sin z = \sin x \cosh y + i \cos x \sinh y$  and  $\cos z = \cos x \cosh y - i \sin x \sinh y$ .

**Proof (continued).** We know that the derivative of  $\sin z$  is  $\cos z$  and for f(z) = f(x + iy) = u(x, y) + iv(x, y) we have  $f'(z) = f'(x + iy) = u_x(x, y) + iv_x(x, y)$  by Theorem 2.21.A. So

$$\cos z = \frac{d}{dz}[\sin z] = \frac{\partial}{\partial x}[\sin x \cosh y] + i\frac{\partial}{\partial x}[\cos x \sinh y]$$
$$= \cos x \cosh y - i \sin x \sinh y.$$

Lemma 3.34

### Lemma 3.34.B

**Lemma 3.34.B.** The only zeros of  $\sin z$  are the real numbers  $z=n\pi$  where  $n\in\mathbb{Z}$ . The only zeros of  $\cos z$  are the real numbers  $z=\pi/2+n\pi$  where  $n\in\mathbb{Z}$ .

**Proof.** Since  $\cos z$  and  $\sin z$  equal  $\cos x$  and  $\sin x$  (respectively) on the real axis, then all the zeros of the real function are also zeros of the corresponding complex function. Now suppose z=x+iy is a zero of  $\sin z$ . Then it must be that  $|\sin z|^2=0$  and we have from Note 3.34.C that  $|\sin z|^2=\sin^2 x+\sinh^2 y$ . So we must have  $\sin x=\sinh y=0$ . But the only value of y for which  $\sinh y=(e^y-e^{-y})/2=0$  is y=0. So the zeros of  $\sin z$  are those values of  $x\in\mathbb{R}$  for which  $\sin x=0$ ; namely, the zeros of  $\sin z$  are all  $z=n\pi$  where  $n\in\mathbb{Z}$ .

 Complex Variables
 January 15, 2020
 4 / 6
 ()
 Complex Variables
 January 15, 2020
 5 /

# Lemma 3.34.B (continued)

**Lemma 3.34.B.** The only zeros of  $\sin z$  are the real numbers  $z=n\pi$  where  $n\in\mathbb{Z}$ . The only zeros of  $\cos z$  are the real numbers  $z=\pi/2+n\pi$  where  $n\in\mathbb{Z}$ .

**Proof (continued).** By the summation formula for sine,

$$-\sin(z - \pi/2) = -(\sin z \cos(-\pi/2) + \cos z \sin(-\pi/2))$$
$$= -(\sin z)0 - \cos z(-1) = \cos z.$$

So  $\cos z=0$  if and only if  $\sin(z-\pi/2)=0$ ; that is, if and only if  $z-\pi/2=n\pi$  where  $n\in\mathbb{Z}$ . So the zeros of  $\cos z$  is  $z=\pi/2+n\pi$  where  $n\in\mathbb{Z}$ .

Complex Variables January 15, 2020 6 / 6