Complex Variables

Chapter 3. Elementary Functions

Section 3.34. Trigonometric Functions—Proofs of Theorems

Table of contents

(1) Lemma 3.34.A
(2) Lemma 3.34.B

Lemma 3.34.A

Lemma 3.34. A. The real and imaginary parts of $\cos z$ and $\sin z$ can be expressed in terms of $\sin x, \cos x, \sinh y$, and $\cosh y$, where $z=x+i y$, as: $\sin z=\sin x \cosh y+i \cos x \sinh y$ and $\cos z=\cos x \cosh y-i \sin x \sinh y$.

Proof. Let $z_{1}=x$ and $z_{2}=i y$. Then by the summation equations we have

$$
\begin{aligned}
\sin z= & \sin (x+i y)=\sin \left(z_{1}+z_{2}\right) \\
= & \sin z_{1} \cos z_{2}+\cos z_{1} \sin z_{2}=\sin x \cos i y+\cos x \sin i y \\
= & \sin x \cosh y+\cos x(i \sinh y) \operatorname{since} \cos i y=\cosh y \\
& \text { and } \sin i y=i \sinh y \\
= & \sin x \cosh y+i \cos x \sinh y
\end{aligned}
$$

Lemma 3.34.A

Lemma 3.34. A. The real and imaginary parts of $\cos z$ and $\sin z$ can be expressed in terms of $\sin x, \cos x, \sinh y$, and $\cosh y$, where $z=x+i y$, as: $\sin z=\sin x \cosh y+i \cos x \sinh y$ and $\cos z=\cos x \cosh y-i \sin x \sinh y$.

Proof. Let $z_{1}=x$ and $z_{2}=i y$. Then by the summation equations we have

$$
\begin{aligned}
\sin z & =\sin (x+i y)=\sin \left(z_{1}+z_{2}\right) \\
& =\sin z_{1} \cos z_{2}+\cos z_{1} \sin z_{2}=\sin x \cos i y+\cos x \sin i y \\
& =\sin x \cosh y+\cos x(i \sinh y) \operatorname{since} \cos i y=\cosh y \\
& \quad \text { and } \sin i y=i \sinh y \\
& =\sin x \cosh y+i \cos x \sinh y
\end{aligned}
$$

Lemma 3.34.A (continued)

Lemma 3.34.A. The real and imaginary parts of $\cos z$ and $\sin z$ can be expressed in terms of $\sin x, \cos x, \sinh y$, and $\cosh y$, where $z=x+i y$, as: $\sin z=\sin x \cosh y+i \cos x \sinh y$ and $\cos z=\cos x \cosh y-i \sin x \sinh y$.

Proof (continued). We know that the derivative of $\sin z$ is $\cos z$ and for $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ we have $f^{\prime}(z)=f^{\prime}(x+i y)=u_{x}(x, y)+i v_{x}(x, y)$ by Theorem 2.21.A. So

$$
\begin{gathered}
\cos z=\frac{d}{d z}[\sin z]=\frac{\partial}{\partial x}[\sin x \cosh y]+i \frac{\partial}{\partial x}[\cos x \sinh y] \\
=\cos x \cosh y-i \sin x \sinh y .
\end{gathered}
$$

Lemma 3.34.B

Lemma 3.34.B. The only zeros of $\sin z$ are the real numbers $z=n \pi$ where $n \in \mathbb{Z}$. The only zeros of $\cos z$ are the real numbers $z=\pi / 2+n \pi$ where $n \in \mathbb{Z}$.

Proof. Since $\cos z$ and $\sin z$ equal $\cos x$ and $\sin x$ (respectively) on the real axis, then all the zeros of the real function are also zeros of the corresponding complex function. Now suppose $z=x+i y$ is a zero of $\sin z$. Then it must be that $|\sin z|^{2}=0$ and we have from Note 3.34.C that $|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y$. So we must have $\sin x=\sinh y=0$. But the only value of y for which $\sinh y=\left(e^{y}-e^{-y}\right) / 2=0$ is $y=0$. So the zeros of $\sin z$ are those values of $x \in \mathbb{R}$ for which $\sin x=0$; namely, the zeros of $\sin z$ are all $z=n \pi$ where $n \in \mathbb{Z}$.

Lemma 3.34.B

Lemma 3.34.B. The only zeros of $\sin z$ are the real numbers $z=n \pi$ where $n \in \mathbb{Z}$. The only zeros of $\cos z$ are the real numbers $z=\pi / 2+n \pi$ where $n \in \mathbb{Z}$.

Proof. Since $\cos z$ and $\sin z$ equal $\cos x$ and $\sin x$ (respectively) on the real axis, then all the zeros of the real function are also zeros of the corresponding complex function. Now suppose $z=x+i y$ is a zero of $\sin z$. Then it must be that $|\sin z|^{2}=0$ and we have from Note 3.34.C that $|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y$. So we must have $\sin x=\sinh y=0$. But the only value of y for which $\sinh y=\left(e^{y}-e^{-y}\right) / 2=0$ is $y=0$. So the zeros of $\sin z$ are those values of $x \in \mathbb{R}$ for which $\sin x=0$; namely, the zeros of $\sin z$ are all $z=n \pi$ where $n \in \mathbb{Z}$.

Lemma 3.34.B (continued)

Lemma 3.34.B. The only zeros of $\sin z$ are the real numbers $z=n \pi$ where $n \in \mathbb{Z}$. The only zeros of $\cos z$ are the real numbers $z=\pi / 2+n \pi$ where $n \in \mathbb{Z}$.

Proof (continued). By the summation formula for sine,

$$
\begin{gathered}
-\sin (z-\pi / 2)=-(\sin z \cos (-\pi / 2)+\cos z \sin (-\pi / 2)) \\
=-(\sin z) 0-\cos z(-1)=\cos z
\end{gathered}
$$

So $\cos z=0$ if and only if $\sin (z-\pi / 2)=0$; that is, if and only if $z-\pi / 2=n \pi$ where $n \in \mathbb{Z}$. So the zeros of $\cos z$ is $z=\pi / 2+n \pi$ where $n \in \mathbb{Z}$.

