Complex Variables

Chapter 4. Integrals

Section 4.43. Upper Bounds for Moduli of Contour Integrals—Proofs of Theorems

Table of contents

(1) Lemma 4.43.A
(2) Theorem 4.43.A

Lemma 4.43.A

Lemma 4.43.A. If $w(t)$ is a piecewise continuous complex valued function defined on an interval $a \leq t \leq b$, then

$$
\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t .
$$

Proof. If $\int_{a}^{b} w(t) d t=0$ then the result trivially holds so, without loss of generality, say $\int_{a}^{b} w(t) d t=r_{0} e^{i \theta_{0}} \neq 0$.

Lemma 4.43.A

Lemma 4.43.A. If $w(t)$ is a piecewise continuous complex valued function defined on an interval $a \leq t \leq b$, then

$$
\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t .
$$

Proof. If $\int_{a}^{b} w(t) d t=0$ then the result trivially holds so, without loss of generality, say $\int_{a}^{b} w(t) d t=r_{0} e^{i \theta_{0}} \neq 0$. Then $r_{0}=\int_{a}^{b} e^{-i \theta_{0}} w(t) d t \in \mathbb{R}$; that is

$$
r_{0}=\operatorname{Re}\left(\int_{a}^{b} e^{-\theta_{0}} w(t) d t\right)=\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta_{0}} w(t)\right) d t .
$$

Lemma 4.43.A

Lemma 4.43.A. If $w(t)$ is a piecewise continuous complex valued function defined on an interval $a \leq t \leq b$, then

$$
\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t .
$$

Proof. If $\int_{a}^{b} w(t) d t=0$ then the result trivially holds so, without loss of generality, say $\int_{a}^{b} w(t) d t=r_{0} e^{i \theta_{0}} \neq 0$. Then $r_{0}=\int_{a}^{b} e^{-i \theta_{0}} w(t) d t \in \mathbb{R}$; that is

$$
r_{0}=\operatorname{Re}\left(\int_{a}^{b} e^{-\theta_{0}} w(t) d t\right)=\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta_{0}} w(t)\right) d t .
$$

But $\operatorname{Re}\left(e^{-i \theta_{0}} w(t)\right) \leq\left|e^{-i \theta_{0}} w(t)\right|=\left|e^{-i \theta_{0}}\right||w(t)|=|w(t)|$, so that $r_{0}=\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta_{0}} w(t)\right) d t \leq \int_{a}^{b}|w(t)| d t$, or
$r_{0}=\left|\int_{a}^{b} e^{-i \theta_{0}} w(t) d t\right|=\left|e^{-i \theta_{0}} \int_{a}^{b} w(t) d t\right|=\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t$.

Lemma 4.43.A

Lemma 4.43.A. If $w(t)$ is a piecewise continuous complex valued function defined on an interval $a \leq t \leq b$, then

$$
\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t
$$

Proof. If $\int_{a}^{b} w(t) d t=0$ then the result trivially holds so, without loss of generality, say $\int_{a}^{b} w(t) d t=r_{0} e^{i \theta_{0}} \neq 0$. Then $r_{0}=\int_{a}^{b} e^{-i \theta_{0}} w(t) d t \in \mathbb{R}$; that is

$$
r_{0}=\operatorname{Re}\left(\int_{a}^{b} e^{-\theta_{0}} w(t) d t\right)=\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta_{0}} w(t)\right) d t .
$$

But $\operatorname{Re}\left(e^{-i \theta_{0}} w(t)\right) \leq\left|e^{-i \theta_{0}} w(t)\right|=\left|e^{-i \theta_{0}}\right||w(t)|=|w(t)|$, so that $r_{0}=\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta_{0}} w(t)\right) d t \leq \int_{a}^{b}|w(t)| d t$, or
$r_{0}=\left|\int_{a}^{b} e^{-i \theta_{0}} w(t) d t\right|=\left|e^{-i \theta_{0}} \int_{a}^{b} w(t) d t\right|=\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t$.

Theorem 4.43.A

Theorem 4.43.A. Let C denote a contour of length L, and suppose that a function $f(z)$ is piecewise continuous on C. If M is a nonnegative constant such that $|f(z)| \leq M$ for all points z on C at which $f(z)$ is defined, then $\left|\int_{C} f(z) d z\right| \leq M L$.

Proof. Let $C=\{z(t) \mid t \in[a, b]\}$. By Lemma 4.43.A

$$
\left|\int_{C} f(z) d z\right|=\left|\int_{a}^{b} f(z(t)) z^{\prime}(t) d t\right| \leq \int_{a}^{b}\left|f(z(t)) z^{\prime}(t)\right| d t .
$$

Theorem 4.43.A

Theorem 4.43.A. Let C denote a contour of length L, and suppose that a function $f(z)$ is piecewise continuous on C. If M is a nonnegative constant such that $|f(z)| \leq M$ for all points z on C at which $f(z)$ is defined, then $\left|\int_{C} f(z) d z\right| \leq M L$.

Proof. Let $C=\{z(t) \mid t \in[a, b]\}$. By Lemma 4.43.A

$$
\left|\int_{C} f(z) d z\right|=\left|\int_{a}^{b} f(z(t)) z^{\prime}(t) d t\right| \leq \int_{a}^{b}\left|f(z(t)) z^{\prime}(t)\right| d t .
$$

Since $|f(z)| \leq M$ for $z \in C$ then $|f(z(t))| \leq M$ for $t \in[a, b]$ and so $\int_{a}^{b}\left|f(z(t)) z^{\prime}(t)\right| d t \leq M \int_{a}^{b}\left|z^{\prime}(t)\right| d t$ and hence

$$
\left|\int_{C} f(z) d z\right| \leq M \int_{a}^{b}\left|z^{\prime}(t)\right| d t=M L,
$$

since $L=\int_{a}^{b}\left|z^{\prime}(t)\right| d t$ by definition (see Section 39).

Theorem 4.43.A

Theorem 4.43.A. Let C denote a contour of length L, and suppose that a function $f(z)$ is piecewise continuous on C. If M is a nonnegative constant such that $|f(z)| \leq M$ for all points z on C at which $f(z)$ is defined, then $\left|\int_{C} f(z) d z\right| \leq M L$.

Proof. Let $C=\{z(t) \mid t \in[a, b]\}$. By Lemma 4.43.A

$$
\left|\int_{C} f(z) d z\right|=\left|\int_{a}^{b} f(z(t)) z^{\prime}(t) d t\right| \leq \int_{a}^{b}\left|f(z(t)) z^{\prime}(t)\right| d t .
$$

Since $|f(z)| \leq M$ for $z \in C$ then $|f(z(t))| \leq M$ for $t \in[a, b]$ and so $\int_{a}^{b}\left|f(z(t)) z^{\prime}(t)\right| d t \leq M \int_{a}^{b}\left|z^{\prime}(t)\right| d t$ and hence

$$
\left|\int_{C} f(z) d z\right| \leq M \int_{a}^{b}\left|z^{\prime}(t)\right| d t=M L
$$

since $L=\int_{a}^{b}\left|z^{\prime}(t)\right| d t$ by definition (see Section 39).

