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Lemma 4.47.1

Lemma 4.47.1

Lemma 4.47.1. Let f be analytic throughout a closed region R consisting
of the points interior to a positively oriented simple closed contour C
together with the points on C itself. For any ε > 0, the region R can be
covered with a finite number of squares and partial squares indexed by
j = 1, 2, . . . , n such that in each one there is a fixed point zj for which the
inequality ∣∣∣∣ f (z)− f (zj)

z − zi
− f ′(zj)

∣∣∣∣ < ε

is satisfied by all points other than zj in that square or partial square.

Proof. Let ε > 0. ASSUME that R has been covered with a finite number
of squares and partial squares but that one of the squares or partial
squares violates the claim of the lemma; that is, some square or partial
square cannot be subdivided enough so that the lemma is satisfied. Let σ0

denote this subregion if it is a square, or let σ0 denote the complete square
which contains the partial square (so that in this second case σ0 contains
points in R and points not in R).
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Lemma 4.47.1

Lemma 4.47.1 (continued 1)

Proof. Next, subdivide σ0 into four squares (each of which has a side of
length 1/2 the length of a side of σ0). At least one of the four smaller
squares must contain points of R but no point zj which satisfies the
lemma. Denote this square as σ1. Then inductively construct nested sets
σ0, σ1, σ2, . . . where each σk violated the lemma. By Exercise 4.49.9 (or
Exercise 4.53.9 in the 9th edition of the book) there is some point z0

common to all σk . Also each of these squares contains points of R other
than z0 (details could be added here). Now every δ neighborhood
|z − z0| < δ of z0 contains the squares σk provided the diagonal of the σk

has length less than δ.

So every δ neighborhood of z0 contains points of R
distinct from z0 and so by definition (see Section 1.11) z0 is an
accumulation point of R. Since R is a closed set then z0 ∈ R by Lemma
1.11.B. Since f is, by hypothesis, analytic on R then f ′(z0) exists.
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Lemma 4.47.1

Lemma 4.47.1 (continued 2)

Proof. So there exists δ > 0 such that for all z in the deleted
neighborhood 0 < |z − z0| < δ of z0 we have∣∣∣∣ f (z)− f (zj)

z − zi
− f ′(zj)

∣∣∣∣ < ε.

But the neighborhood |z − z0| < δ of z0 contains a square σK (when K is
large enough that the length of a diagonal of that square is less than δ; see
Figure 56).
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Lemma 4.47.1

Lemma 4.47.1 (continued 3)

Lemma 4.47.1. Let f be analytic throughout a closed region R consisting
of the points interior to a positively oriented simple closed contour C
together with the points on C itself. For any ε > 0, the region R can be
covered with a finite number of squares and partial squares indexed by
j = 1, 2, . . . , n such that in each one there is a fixed point zj for which the
inequality |(f (z)− f (zj))(z − zi )− f ′(zj)| < ε is satisfied by all points
other than zj in that square or partial square.

Proof (continued). But then z0 serves as the point zj in the claim of the
lemma on the square σK (or the partial square σK ∩ R). This
CONTRADICTS the fact that σK was constructed in such a way that the
lemma is not satisfied on square σK (or partial square σK ∩ R). This
contradiction shows that the assumption that some square σ0 cannot be
sufficiently subdivided enough so that the lemma is satisfied is false. So in
the original covering of R by squares, each square can be subdivided
enough to satisfy the lemma. This shows that the region R can be covered
as required.
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Theorem 4.47.A

Theorem 4.47.A

Lemma 4.47.A. Let f be analytic throughout a closed region R consisting
of the points interior to a positively oriented simple closed contour C
together with the points on C itself. For any covering of R by squares and
partial squares as described in Lemma 4.47.1, put positive orientations on
each of the boundaries of the squares and partial squares (see Figure 57)
and denote the resulting positively oriented contours as C1,C2, . . . ,Cn. On
the jth square or partial square, define

δj(z) =

{
(f (z)− f (zj))/(z − zj)− f ′(zj) if z 6= zj

0 if z = zj .

Then ∣∣∣∣∫
C

f (z) dz

∣∣∣∣ ≤ n∑
j=1

∣∣∣∣∣
∫

Cj

(z − zj)δj(z) dz

∣∣∣∣∣ .
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Theorem 4.47.A

Theorem 4.47.A (continued 1)

Proof. Given ε > 0, cover R by squares and partial squares as described in
Lemma 4.47.1. Label the squares 1, 2, . . . , n and on the jth square or
partial square define

δj(z) =

{
(f (z)− f (zj))/(z − zj)− f ′(zj) if z 6= zj

0 if z = zj .

Now δj(z) is continuous throughout the subregion since f (z) is continuous
there, and so limz→zj δj(z) = f ′(zj) = f ′(zj) = 0.
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Theorem 4.47.A

Theorem 4.47.A (continued 2)

Proof (continued). For z ∈ Cj , by the definition of δj(z), we have

f (z) = f (zj)− zj f
′(zj) + f ′(zj)z + (z − zj)δj(z)

and so∫
Cj

f (z) dz = (f (zj)−zj f
′(zj))

∫
Cj

dz + f ′(zj)

∫
Cj

z dz +

∫
Cj

(z−zj)δj(z) dz .

But since Cj is closed then
∫
Cj

dz =
∫
Cj

z dz = 0 by Theorem 4.44.A(c), so

we have∫
Cj

f (z) dz =

∫
Cj

(z − zj)δj(z) dz for j = 1, 2, . . . , n. (∗)

Summing over j we have

∫
C

f (z) dz =
n∑

j=1

∫
Cj

f (z) dz since the two

integrals along the common boundary of every pair of adjacent subregions
cancel each other (see Figure 57), so only the integrals along the arcs that
are parts of C remain in the sum.
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Theorem 4.47.A

Theorem 4.47.A (continued 3)

Proof (continued). By (∗) we therefore have∫
C

f (z) dz =
n∑

j=1

∫
Cj

(z − zj)δj(z) dz

and so by the Triangle Inequality,∫
C

f (z) dz ≤
n∑

j=1

∣∣∣∣∣
∫

Cj

(z − zj)δj(z) dz

∣∣∣∣∣ ,

as claimed.
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Proof of the Cauchy-Goursat Theorem

Proof of the Cauchy-Goursat Theorem

Proof. Let ε > 0 and let region R consist of the points interior to
(positively oriented) simple closed contour C together with the points on
C itself. Let there be a covering of R with squares and partial squares, as
given by Lemma 4.47.1. Number the squares and partial squares with
1, 2, . . . , n. Let Cj be as described in Lemma 4.47.A and let sj be the
length of a side of square j . Then for z and zj in the jth square (or partial
square) we have |z − zj | ≤

√
2sj . By the choice of the squares and

definition of δj(z) in Lemma 4.47.A, we have |δj(z)| < ε. So for z ∈ Cj ,

|(z − zj)δj(z)| = |z − zj ||δj(z)| <
√

2sjε.

Since the length of path Cj is 4sj if Cj is the boundary of a square and in
this case, by Theorem 4.43.A,∣∣∣∣∣

∫
Cj

(z − zj)δj(z) dz

∣∣∣∣∣ <
√

2sjε4sj = 4
√

2Ajε

where Aj = s2
j is the area of the jth square.
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Proof of the Cauchy-Goursat Theorem

Proof of the Cauchy-Goursat Theorem (continued 1)

Proof (continued). If Cj is the boundary of a partial square, its length
does not exceed 4sj + Lj where Lj is the length of the part of Xj which is
also a part of C . Again by Theorem 4.43.A, we have∣∣∣∣∫

C1

(z − zj)δj(z) dz

∣∣∣∣ <
√

2sjε(4sj + Lj) < 4
√

2Ajε +
√

2SLkε

where S is the length of a side of some square that encloses the entire
contour C as well as all of the squares in covering R (see Figure 57). So
the sum of all of the areas Aj does not exceed S2.
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Proof of the Cauchy-Goursat Theorem

Proof of the Cauchy-Goursat Theorem (continued 2)

Proof (continued). If L denotes the length of contour C , then we have∣∣∣∣∫
C

f (z) dz

∣∣∣∣ ≤
n∑

j=1

∣∣∣∣∣
∫

Cj

(z − zj)δj(z) dz

∣∣∣∣∣ by Lemma 4.47.A

< 4
√

2ε
∑′

Aj +
√

2ε
(
4
∑′′

Aj + S
∑′′

Lj

)
where

∑′ denotes summation over indices

involving squares and
∑′′ denotes summation

over indices involving partial squares

≤ (4
√

2S2 +
√

2SL)ε.

Since 4
√

2S2 +
√

2SL is constant for given C and ε > 0 can be made
arbitrarily small, then we must have

∫
C f (z) dz = 0, as claimed. The proof

for C negatively oriented is similar (requiring similarly modified
lemmas).
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