Complex Variables

Chapter 4. Integrals

Section 4.47. Proof of the Theorem—Proofs of Theorems

Table of contents

(1) Lemma 4.47.1
(2) Theorem 4.47.A
(3) Proof of the Cauchy-Goursat Theorem

Lemma 4.47.1

Lemma 4.47.1. Let f be analytic throughout a closed region R consisting of the points interior to a positively oriented simple closed contour C together with the points on C itself. For any $\varepsilon>0$, the region R can be covered with a finite number of squares and partial squares indexed by $j=1,2, \ldots, n$ such that in each one there is a fixed point z_{j} for which the inequality

$$
\left|\frac{f(z)-f\left(z_{j}\right)}{z-z_{i}}-f^{\prime}\left(z_{j}\right)\right|<\varepsilon
$$

is satisfied by all points other than z_{j} in that square or partial square.
Proof. Let $\varepsilon>0$. ASSUME that R has been covered with a finite number of squares and partial squares but that one of the squares or partial squares violates the claim of the lemma; that is, some square or partial square cannot be subdivided enough so that the lemma is satisfied. Let σ_{0} denote this subregion if it is a square, or let σ_{0} denote the complete square which contains the partial square (so that in this second case σ_{0} contains points in R and points not in R)

Lemma 4.47.1

Lemma 4.47.1. Let f be analytic throughout a closed region R consisting of the points interior to a positively oriented simple closed contour C together with the points on C itself. For any $\varepsilon>0$, the region R can be covered with a finite number of squares and partial squares indexed by $j=1,2, \ldots, n$ such that in each one there is a fixed point z_{j} for which the inequality

$$
\left|\frac{f(z)-f\left(z_{j}\right)}{z-z_{i}}-f^{\prime}\left(z_{j}\right)\right|<\varepsilon
$$

is satisfied by all points other than z_{j} in that square or partial square.
Proof. Let $\varepsilon>0$. ASSUME that R has been covered with a finite number of squares and partial squares but that one of the squares or partial squares violates the claim of the lemma; that is, some square or partial square cannot be subdivided enough so that the lemma is satisfied. Let σ_{0} denote this subregion if it is a square, or let σ_{0} denote the complete square which contains the partial square (so that in this second case σ_{0} contains points in R and points not in R).

Lemma 4.47.1 (continued 1)

Proof. Next, subdivide σ_{0} into four squares (each of which has a side of length $1 / 2$ the length of a side of σ_{0}). At least one of the four smaller squares must contain points of R but no point z_{j} which satisfies the lemma. Denote this square as σ_{1}. Then inductively construct nested sets $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ where each σ_{k} violated the lemma. By Exercise 4.49.9 (or Exercise 4.53.9 in the 9th edition of the book) there is some point z_{0} common to all σ_{k}. Also each of these squares contains points of R other than z_{0} (details could be added here). Now every δ neighborhood $\left|z-z_{0}\right|<\delta$ of z_{0} contains the squares σ_{k} provided the diagonal of the σ_{k} has length less than δ.

Lemma 4.47.1 (continued 1)

Proof. Next, subdivide σ_{0} into four squares (each of which has a side of length $1 / 2$ the length of a side of σ_{0}). At least one of the four smaller squares must contain points of R but no point z_{j} which satisfies the lemma. Denote this square as σ_{1}. Then inductively construct nested sets $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ where each σ_{k} violated the lemma. By Exercise 4.49.9 (or Exercise 4.53 .9 in the 9 th edition of the book) there is some point z_{0} common to all σ_{k}. Also each of these squares contains points of R other than z_{0} (details could be added here). Now every δ neighborhood $\left|z-z_{0}\right|<\delta$ of z_{0} contains the squares σ_{k} provided the diagonal of the σ_{k} has length less than δ. So every δ neighborhood of z_{0} contains points of R distinct from z_{0} and so by definition (see Section 1.11) z_{0} is an accumulation point of R. Since R is a closed set then $z_{0} \in R$ by Lemma 1.11.B. Since f is, by hypothesis, analytic on R then $f^{\prime}\left(z_{0}\right)$ exists.

Lemma 4.47.1 (continued 1)

Proof. Next, subdivide σ_{0} into four squares (each of which has a side of length $1 / 2$ the length of a side of σ_{0}). At least one of the four smaller squares must contain points of R but no point z_{j} which satisfies the lemma. Denote this square as σ_{1}. Then inductively construct nested sets $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ where each σ_{k} violated the lemma. By Exercise 4.49.9 (or Exercise 4.53 .9 in the 9th edition of the book) there is some point z_{0} common to all σ_{k}. Also each of these squares contains points of R other than z_{0} (details could be added here). Now every δ neighborhood $\left|z-z_{0}\right|<\delta$ of z_{0} contains the squares σ_{k} provided the diagonal of the σ_{k} has length less than δ. So every δ neighborhood of z_{0} contains points of R distinct from z_{0} and so by definition (see Section 1.11) z_{0} is an accumulation point of R. Since R is a closed set then $z_{0} \in R$ by Lemma 1.11.B. Since f is, by hypothesis, analytic on R then $f^{\prime}\left(z_{0}\right)$ exists.

Lemma 4.47.1 (continued 2)

Proof. So there exists $\delta>0$ such that for all z in the deleted neighborhood $0<\left|z-z_{0}\right|<\delta$ of z_{0} we have

$$
\left|\frac{f(z)-f\left(z_{j}\right)}{z-z_{i}}-f^{\prime}\left(z_{j}\right)\right|<\varepsilon .
$$

But the neighborhood $\left|z-z_{0}\right|<\delta$ of z_{0} contains a square σ_{K} (when K is large enough that the length of a diagonal of that square is less than δ; see Figure 56).

Lemma 4.47.1 (continued 3)

Lemma 4.47.1. Let f be analytic throughout a closed region R consisting of the points interior to a positively oriented simple closed contour C together with the points on C itself. For any $\varepsilon>0$, the region R can be covered with a finite number of squares and partial squares indexed by $j=1,2, \ldots, n$ such that in each one there is a fixed point z_{j} for which the inequality $\left|\left(f(z)-f\left(z_{j}\right)\right)\left(z-z_{i}\right)-f^{\prime}\left(z_{j}\right)\right|<\varepsilon$ is satisfied by all points other than z_{j} in that square or partial square.

Proof (continued). But then z_{0} serves as the point z_{j} in the claim of the lemma on the square σ_{K} (or the partial square $\sigma_{K} \cap R$). This CONTRADICTS the fact that σ_{K} was constructed in such a way that the lemma is not satisfied on square σ_{K} (or partial square $\sigma_{K} \cap R$). This contradiction shows that the assumption that some square σ_{0} cannot be sufficiently subdivided enough so that the lemma is satisfied is false. So in the original covering of R by squares, each square can be subdivided enough to satisfy the lemma. This shows that the region R can be covered as required

Lemma 4.47.1 (continued 3)

Lemma 4.47.1. Let f be analytic throughout a closed region R consisting of the points interior to a positively oriented simple closed contour C together with the points on C itself. For any $\varepsilon>0$, the region R can be covered with a finite number of squares and partial squares indexed by $j=1,2, \ldots, n$ such that in each one there is a fixed point z_{j} for which the inequality $\left|\left(f(z)-f\left(z_{j}\right)\right)\left(z-z_{i}\right)-f^{\prime}\left(z_{j}\right)\right|<\varepsilon$ is satisfied by all points other than z_{j} in that square or partial square.

Proof (continued). But then z_{0} serves as the point z_{j} in the claim of the lemma on the square σ_{K} (or the partial square $\sigma_{K} \cap R$). This CONTRADICTS the fact that σ_{K} was constructed in such a way that the lemma is not satisfied on square σ_{K} (or partial square $\sigma_{K} \cap R$). This contradiction shows that the assumption that some square σ_{0} cannot be sufficiently subdivided enough so that the lemma is satisfied is false. So in the original covering of R by squares, each square can be subdivided enough to satisfy the lemma. This shows that the region R can be covered as required.

Theorem 4.47.A

Lemma 4.47. A. Let f be analytic throughout a closed region R consisting of the points interior to a positively oriented simple closed contour C together with the points on C itself. For any covering of R by squares and partial squares as described in Lemma 4.47.1, put positive orientations on each of the boundaries of the squares and partial squares (see Figure 57) and denote the resulting positively oriented contours as $C_{1}, C_{2}, \ldots, C_{n}$. On the j th square or partial square, define

$$
\delta_{j}(z)=\left\{\begin{array}{cc}
\left(f(z)-f\left(z_{j}\right)\right) /\left(z-z_{j}\right)-f^{\prime}\left(z_{j}\right) & \text { if } z \neq z_{j} \\
0 & \text { if } z=z_{j}
\end{array}\right.
$$

Then

$$
\left|\int_{C} f(z) d z\right| \leq \sum_{j=1}^{n}\left|\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right|
$$

Theorem 4.47.A (continued 1)

FIGURE 57

Proof. Given $\varepsilon>0$, cover R by squares and partial squares as described in Lemma 4.47.1. Label the squares $1,2, \ldots, n$ and on the j th square or partial square define

$$
\delta_{j}(z)=\left\{\begin{array}{cl}
\left(f(z)-f\left(z_{j}\right)\right) /\left(z-z_{j}\right)-f^{\prime}\left(z_{j}\right) & \text { if } z \neq z_{j} \\
0 & \text { if } z=z_{j}
\end{array}\right.
$$

Now $\delta_{j}(z)$ is continuous throughout the subregion since $f(z)$ is continuous there, and so $\lim _{z \rightarrow z_{j}} \delta_{j}(z)=f^{\prime}\left(z_{j}\right)=f^{\prime}\left(z_{j}\right)=0$.

Theorem 4.47.A (continued 1)

Proof. Given $\varepsilon>0$, cover R by squares and partial squares as described in Lemma 4.47.1. Label the squares $1,2, \ldots, n$ and on the j th square or partial square define

$$
\delta_{j}(z)=\left\{\begin{array}{cl}
\left(f(z)-f\left(z_{j}\right)\right) /\left(z-z_{j}\right)-f^{\prime}\left(z_{j}\right) & \text { if } z \neq z_{j} \\
0 & \text { if } z=z_{j}
\end{array}\right.
$$

Now $\delta_{j}(z)$ is continuous throughout the subregion since $f(z)$ is continuous there, and so $\lim _{z \rightarrow z_{j}} \delta_{j}(z)=f^{\prime}\left(z_{j}\right)=f^{\prime}\left(z_{j}\right)=0$.

Theorem 4.47.A (continued 2)

Proof (continued). For $z \in C_{j}$, by the definition of $\delta_{j}(z)$, we have

$$
f(z)=f\left(z_{j}\right)-z_{j} f^{\prime}\left(z_{j}\right)+f^{\prime}\left(z_{j}\right) z+\left(z-z_{j}\right) \delta_{j}(z)
$$

and so
$\int_{C_{j}} f(z) d z=\left(f\left(z_{j}\right)-z_{j} f^{\prime}\left(z_{j}\right)\right) \int_{C_{j}} d z+f^{\prime}\left(z_{j}\right) \int_{C_{j}} z d z+\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z$.
But since C_{j} is closed then $\int_{C_{j}} d z=\int_{C_{j}} z d z=0$ by Theorem 4.44.A(c), so we have

$$
\begin{equation*}
\int_{C_{j}} f(z) d z=\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z \text { for } j=1,2, \ldots, n \tag{*}
\end{equation*}
$$

Summing over j we have $\int_{C} f(z) d z=\sum_{j=1}^{n} \int_{C_{j}} f(z) d z$ since the two
integrals along the common boundary of every pair of adjacent subregions cancel each other (see Figure 57), so only the integrals along the arcs that are parts of C remain in the sum.

Theorem 4.47.A (continued 2)

Proof (continued). For $z \in C_{j}$, by the definition of $\delta_{j}(z)$, we have

$$
f(z)=f\left(z_{j}\right)-z_{j} f^{\prime}\left(z_{j}\right)+f^{\prime}\left(z_{j}\right) z+\left(z-z_{j}\right) \delta_{j}(z)
$$

and so
$\int_{C_{j}} f(z) d z=\left(f\left(z_{j}\right)-z_{j} f^{\prime}\left(z_{j}\right)\right) \int_{C_{j}} d z+f^{\prime}\left(z_{j}\right) \int_{C_{j}} z d z+\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z$.
But since C_{j} is closed then $\int_{C_{j}} d z=\int_{C_{j}} z d z=0$ by Theorem 4.44.A(c), so we have

$$
\begin{equation*}
\int_{C_{j}} f(z) d z=\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z \text { for } j=1,2, \ldots, n \tag{*}
\end{equation*}
$$

Summing over j we have $\int_{C} f(z) d z=\sum_{j=1}^{n} \int_{C_{j}} f(z) d z$ since the two
integrals along the common boundary of every pair of adjacent subregions cancel each other (see Figure 57), so only the integrals along the arcs that are parts of C remain in the sum.

Theorem 4.47.A (continued 3)

Proof (continued). By (*) we therefore have

$$
\int_{C} f(z) d z=\sum_{j=1}^{n} \int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z
$$

and so by the Triangle Inequality,

$$
\int_{C} f(z) d z \leq \sum_{j=1}^{n}\left|\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right|
$$

as claimed.

Proof of the Cauchy-Goursat Theorem

Proof. Let $\varepsilon>0$ and let region R consist of the points interior to (positively oriented) simple closed contour C together with the points on C itself. Let there be a covering of R with squares and partial squares, as given by Lemma 4.47.1. Number the squares and partial squares with $1,2, \ldots, n$. Let C_{j} be as described in Lemma 4.47.A and let s_{j} be the length of a side of square j. Then for z and z_{j} in the j th square (or partial square) we have $\left|z-z_{j}\right| \leq \sqrt{2} s_{j}$. By the choice of the squares and definition of $\delta_{j}(z)$ in Lemma 4.47.A, we have $\left|\delta_{j}(z)\right|<\varepsilon$. So for $z \in C_{j}$,

$$
\left|\left(z-z_{j}\right) \delta_{j}(z)\right|=\left|z-z_{j}\right|\left|\delta_{j}(z)\right|<\sqrt{2} s_{j} \varepsilon .
$$

Since the length of path C_{j} is $4 s_{j}$ if C_{j} is the boundary of a square and in this case, by Theorem 4.43.A,

$$
\left|\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right|<\sqrt{2} s_{j} \varepsilon 4 s_{j}=4 \sqrt{2} A_{j} \varepsilon
$$

where $A_{j}=s_{j}^{2}$ is the area of the j th square.

Proof of the Cauchy-Goursat Theorem

Proof. Let $\varepsilon>0$ and let region R consist of the points interior to (positively oriented) simple closed contour C together with the points on C itself. Let there be a covering of R with squares and partial squares, as given by Lemma 4.47.1. Number the squares and partial squares with $1,2, \ldots, n$. Let C_{j} be as described in Lemma 4.47.A and let s_{j} be the length of a side of square j. Then for z and z_{j} in the j th square (or partial square) we have $\left|z-z_{j}\right| \leq \sqrt{2} s_{j}$. By the choice of the squares and definition of $\delta_{j}(z)$ in Lemma 4.47.A, we have $\left|\delta_{j}(z)\right|<\varepsilon$. So for $z \in C_{j}$,

$$
\left|\left(z-z_{j}\right) \delta_{j}(z)\right|=\left|z-z_{j}\right|\left|\delta_{j}(z)\right|<\sqrt{2} s_{j} \varepsilon .
$$

Since the length of path C_{j} is $4 s_{j}$ if C_{j} is the boundary of a square and in this case, by Theorem 4.43.A,

$$
\left|\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right|<\sqrt{2} s_{j} \varepsilon 4 s_{j}=4 \sqrt{2} A_{j} \varepsilon
$$

where $A_{j}=s_{j}^{2}$ is the area of the j th square.

Proof of the Cauchy-Goursat Theorem (continued 1)

Proof (continued). If C_{j} is the boundary of a partial square, its length does not exceed $4 s_{j}+L_{j}$ where L_{j} is the length of the part of X_{j} which is also a part of C. Again by Theorem 4.43.A, we have

$$
\left|\int_{C_{1}}\left(z-z_{j}\right) \delta_{j}(z) d z\right|<\sqrt{2} s_{j} \varepsilon\left(4 s_{j}+L_{j}\right)<4 \sqrt{2} A_{j} \varepsilon+\sqrt{2} S L_{k} \varepsilon
$$

where S is the length of a side of some square that encloses the entire contour C as well as all of the squares in covering R (see Figure 57). So the sum of all of the areas A_{j} does not exceed S^{2}.

Proof of the Cauchy-Goursat Theorem (continued 2)

Proof (continued). If L denotes the length of contour C, then we have

$$
\begin{aligned}
\left|\int_{C} f(z) d z\right| \leq & \sum_{j=1}^{n}\left|\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right| \text { by Lemma 4.47.A } \\
< & 4 \sqrt{2} \varepsilon \sum^{\prime} A_{j}+\sqrt{2} \varepsilon\left(4 \sum^{\prime \prime} A_{j}+S \sum^{\prime \prime} L_{j}\right) \\
& \quad \text { where } \sum^{\prime} \text { denotes summation over indices } \\
& \quad \text { involving squares and } \sum^{\prime \prime} \text { denotes summation } \\
& \quad \text { over indices involving partial squares } \\
\leq & \left(4 \sqrt{2} S^{2}+\sqrt{2} S L\right) \varepsilon .
\end{aligned}
$$

Since $4 \sqrt{2} S^{2}+\sqrt{2} S L$ is constant for given C and $\varepsilon>0$ can be made arbitrarily small, then we must have $\int_{C} f(z) d z=0$, as claimed. The proof for C negatively oriented is similar (requiring similarly modified lemmas).

Proof of the Cauchy-Goursat Theorem (continued 2)

Proof (continued). If L denotes the length of contour C, then we have

$$
\begin{aligned}
\left|\int_{C} f(z) d z\right| \leq & \sum_{j=1}^{n}\left|\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right| \text { by Lemma 4.47.A } \\
< & 4 \sqrt{2} \varepsilon \sum^{\prime} A_{j}+\sqrt{2} \varepsilon\left(4 \sum^{\prime \prime} A_{j}+S \sum^{\prime \prime} L_{j}\right) \\
& \quad \text { where } \sum^{\prime} \text { denotes summation over indices } \\
& \quad \text { involving squares and } \sum^{\prime \prime} \text { denotes summation } \\
& \quad \text { over indices involving partial squares } \\
\leq & \left(4 \sqrt{2} S^{2}+\sqrt{2} S L\right) \varepsilon .
\end{aligned}
$$

Since $4 \sqrt{2} S^{2}+\sqrt{2} S L$ is constant for given C and $\varepsilon>0$ can be made arbitrarily small, then we must have $\int_{C} f(z) d z=0$, as claimed. The proof for C negatively oriented is similar (requiring similarly modified lemmas).

