Complex Variables

Chapter 4. Integrals

Section 4.49. Multiply Connected Domains—Proofs of Theorems

Table of contents

(1) Theorem 4.49.A
(2) Corollary 4.49.B. Principle of Deformation

Theorem 4.49.A

Theorem 4.49.A. Suppose that
(a) C is a simple closed contour, parameterized in the counterclockwise direction; and
(b) C_{k}, for $k=1,2, \ldots, n$, are simple closed contours interior to C, all parameterized in the clockwise direction, that are disjoint and whose interiors have no points in common (so one such contour cannot be inside another).
If a function f is analytic on all of these contours and throughout the multiply connected domain consisting of all points inside C and exterior to each C_{k}, then

$$
\int_{c} f(z) d z+\sum_{k=1}^{n} \int_{C_{k}} f(z) d z=0
$$

"Proof." We assume some obvious properties of simple closed contours
and assume that we can introduce a polygonal path L_{1} consisting of a finite number of line segments joined end to end to connect the outer contour C to the inner contour C_{1}.

Theorem 4.49.A

Theorem 4.49.A. Suppose that
(a) C is a simple closed contour, parameterized in the counterclockwise direction; and
(b) C_{k}, for $k=1,2, \ldots, n$, are simple closed contours interior to C, all parameterized in the clockwise direction, that are disjoint and whose interiors have no points in common (so one such contour cannot be inside another).
If a function f is analytic on all of these contours and throughout the multiply connected domain consisting of all points inside C and exterior to each C_{k}, then

$$
\int_{c} f(z) d z+\sum_{k=1}^{n} \int_{C_{k}} f(z) d z=0
$$

"Proof." We assume some obvious properties of simple closed contours and assume that we can introduce a polygonal path L_{1} consisting of a finite number of line segments joined end to end to connect the outer contour C to the inner contour C_{1}.

Theorem 4.49.A (continued 1)

"Proof" continued. Introduce polygonal path L_{2} connecting C_{1} to C_{2}, and in general polygonal path L_{k+1} connecting C_{k} to C_{k+1} for $k=1,2, \ldots, n-1$. Introduce polygonal path L_{n+1} connecting C_{n} to outer contour C. See Figure 60 (In Figure 60, each polygonal path is a single line segment and the L_{k} are disjoint; these need not be the case).

Theorem 4.49.A (continued 1)

"Proof" continued. Introduce polygonal path L_{2} connecting C_{1} to C_{2}, and in general polygonal path L_{k+1} connecting C_{k} to C_{k+1} for $k=1,2, \ldots, n-1$. Introduce polygonal path L_{n+1} connecting C_{n} to outer contour C. See Figure 60 (In Figure 60, each polygonal path is a single line segment and the L_{k} are disjoint; these need not be the case).

Theorem 4.49.A (continued 1)

"Proof" continued. Introduce polygonal path L_{2} connecting C_{1} to C_{2}, and in general polygonal path L_{k+1} connecting C_{k} to C_{k+1} for $k=1,2, \ldots, n-1$. Introduce polygonal path L_{n+1} connecting C_{n} to outer contour C. See Figure 60 (In Figure 60, each polygonal path is a single line segment and the L_{k} are disjoint; these need not be the case).

As shown in Figure 60, two simple closed contours Γ_{1} and Γ_{2} can be formed, each consisting of polygonal paths L_{k} or $-L_{k}$ and pieces of C and C_{k} and each described in such a direction that the points enclosed by them "lie to the left." (This, granted, is an informal "proof by picture.")

Theorem 4.49.A (continued 1)

"Proof" continued. Introduce polygonal path L_{2} connecting C_{1} to C_{2}, and in general polygonal path L_{k+1} connecting C_{k} to C_{k+1} for $k=1,2, \ldots, n-1$. Introduce polygonal path L_{n+1} connecting C_{n} to outer contour C. See Figure 60 (In Figure 60, each polygonal path is a single line segment and the L_{k} are disjoint; these need not be the case).

As shown in Figure 60, two simple closed contours Γ_{1} and Γ_{2} can be formed, each consisting of polygonal paths L_{k} or $-L_{k}$ and pieces of C and C_{k} and each described in such a direction that the points enclosed by them "lie to the left." (This, granted, is an informal "proof by picture.")

Theorem 4.49.A (continued 2)

"Proof" continued. By the Cauchy-Goursat Theorem (Theorem 4.46.A), $\int_{\Gamma_{1}} f(z) d z=\int_{\Gamma_{2}} f(z) d z=0$. So (see Section 40)

$$
\int_{\Gamma_{1}} f(z) d z+\int_{\Gamma_{2}} f(z) d z=0=\int_{\Gamma_{1} \cup \Gamma_{2}} f(z) d z
$$

Now for each $k=1,2, \ldots, n+1$, the integral $\int_{L_{k}} f(z) d z$ and $\int_{-L_{k}} f(z) d z$ are parts of $\int_{\Gamma_{1} \cup \Gamma_{2}} f(z) d z$, but $\int_{-L_{k}} f(z) d z=-\int_{L_{k}} f(z) d z$ (see Note 4.40.B) so these cancel each other and

$$
0=\int_{\Gamma_{1} \cup \Gamma_{2}} f(z) d z=\int_{C} f(z) d z+\sum_{k=1}^{n} \int_{C_{k}} f(z) d z
$$

Theorem 4.49.A (continued 2)

"Proof" continued. By the Cauchy-Goursat Theorem (Theorem 4.46.A), $\int_{\Gamma_{1}} f(z) d z=\int_{\Gamma_{2}} f(z) d z=0$. So (see Section 40)

$$
\int_{\Gamma_{1}} f(z) d z+\int_{\Gamma_{2}} f(z) d z=0=\int_{\Gamma_{1} \cup \Gamma_{2}} f(z) d z
$$

Now for each $k=1,2, \ldots, n+1$, the integral $\int_{L_{k}} f(z) d z$ and $\int_{-L_{k}} f(z) d z$ are parts of $\int_{\Gamma_{1} \cup \Gamma_{2}} f(z) d z$, but $\int_{-L_{k}} f(z) d z=-\int_{L_{k}} f(z) d z$ (see Note 4.40.B) so these cancel each other and

$$
0=\int_{\Gamma_{1} \cup \Gamma_{2}} f(z) d z=\int_{C} f(z) d z+\sum_{k=1}^{n} \int_{C_{k}} f(z) d z
$$

as claimed.

Corollary 4.49.B

Corollary 4.49.B. Principle of Deformation.

Let C_{1} and C_{2} denote positively oriented simple closed contours, where C_{1} is interior to C_{2}. If a function f is analytic in the closed region consisting of those contours and all points between them, then

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

Proof. By Theorem 4.49.A,

$$
\int_{C_{2}} f(z) d z+\int_{-C_{1}} f(z) d z=0
$$

(we need to use $-C_{1}$ to get the inner contour parameterized in a clockwise direction; see Figure 61).

Corollary 4.49.B

Corollary 4.49.B. Principle of Deformation.

Let C_{1} and C_{2} denote positively oriented simple closed contours, where C_{1} is interior to C_{2}. If a function f is analytic in the closed region consisting of those contours and all points between them, then

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

Proof. By Theorem 4.49.A,

$$
\int_{C_{2}} f(z) d z+\int_{-C_{1}} f(z) d z=0
$$

(we need to use $-C_{1}$ to get the inner contour parameterized in a clockwise direction; see Figure 61).

Corollary 4.49.B

Proof (continued).

So

$$
\int_{C_{2}} f(z) d z=-\int_{-C_{1}} f(z) d z=\int_{C_{1}} f(z) d z
$$

(see Note 4.40.B).

