Complex Variables

Chapter 4. Integrals

Section 4.50. Cauchy Integral Formula—Proofs of Theorems

Complex Variables

April 16, 2020

1 / 5

Theorem 4.50.A

Theorem 4.50.A. Cauchy Integral Formula.

Let f be analytic everywhere inside and on simple closed contour C, parameterized in the positive sense. If z_0 is any point interior to C, then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z) dz}{z - z_0}.$$

Proof. Let C_{ρ} denote the positively oriented circle $|z-z_{0}|=\rho$, where ρ is small enough the C_{ρ} is interior to C (which can be done since C is a closed set and so $\mathbb{C}\setminus C$ is open with z_{0} as an interior point of the open set $\mathbb{C}\setminus C$; see Figure 66).

Complex Variables

April 16, 2020

20 2

Theorem 4.50.A. Cauchy Integral Formula

Theorem 4.50.A (continued 1)

Proof (continued). The function $f(z)/(z-z_0)$ is analytic inside and on C except at z_0 . So by the Principle of Deformation (Corollary 4.49.B),

$$\int_{C} \frac{f(z) dz}{z - z_{0}} = \int_{C_{\rho}} \frac{f(z) dz}{z - z_{0}}. \text{ So}$$

$$\int_{C} \frac{f(z) dz}{z - z_{0}} - f(z_{0}) \int_{C_{\rho}} \frac{dz}{z - z_{0}} = \int_{C_{\rho}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz. \text{ Next,}$$

$$\int_{C} \frac{dz}{z - z_{0}} = 2\pi i \text{ by Exercise 42.10(b), so}$$

$$\int_C \frac{f(z) dz}{z - z_0} - 2\pi i f(z_0) = \int_{C_\rho} \frac{f(z) - f(z_0)}{z - z_0} dz.$$
 (4)

Since f is analytic, then it is continuous at z_0 and so for all $\varepsilon>0$ there is $\delta>0$ such that if $|z-z_0|<\delta$ then $|f(z)-f(z_0)|<\varepsilon/(2\pi)$. The only restriction on ρ above is that C_ρ is interior to C. Let $\rho'=\min\{\rho,\delta/2\}$. Then $C_{\rho'}$ is interior to C and so the equations above involving C_ρ also hold for $C_{\rho'}$.

Theorem 4.50.A. Cauchy Integral Formu

Theorem 4.50.A (continued 2)

Proof (continued). Then for z on $C_{\rho'}$ we have $|z-z_0|=\rho'\leq \delta/2<\delta$ and so $|f(z)-f(z_0)|<\varepsilon/(2\pi)$; also the length of $C_{\rho'}$ is $2\pi\rho'$ and so by Theorem 4.43.A,

$$\left| \int_{C_{\rho'}} \frac{f(z) - f(z_0)}{z - z_0} \, dz \right| \leq \left(\frac{\varepsilon/(2\pi)}{\rho'} \right) (2\pi \rho') = \varepsilon.$$

So by equation (4),

$$\left| \int_{C_{o'}} \frac{f(z) - f(z_0)}{z - z_0} dz \right| = \left| \int_C \frac{f(z) dz}{z - z_0} - 2\pi i f(z_0) \right| < \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, then the quantity $\int_C \frac{f(z) dz}{z - z_0} - 2\pi i f(z_0)$ must be 0, and the result follows.

Complex Variables April 16, 2020 4 / 5

Complex Variables April 16, 2020