Complex Variables

Chapter 4. Integrals

Section 4.50. Cauchy Integral Formula—Proofs of Theorems

Table of contents

(1) Theorem 4.50.A. Cauchy Integral Formula

Theorem 4.50.A

Theorem 4.50.A. Cauchy Integral Formula.

Let f be analytic everywhere inside and on simple closed contour C, parameterized in the positive sense. If z_{0} is any point interior to C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}} .
$$

Proof. Let C_{ρ} denote the positively oriented circle $\left|z-z_{0}\right|=\rho$, where ρ is small enough the C_{ρ} is interior to C (which can be done since C is a closed set and so $\mathbb{C} \backslash C$ is open with z_{0} as an interior point of the open set $\mathbb{C} \backslash C$; see Figure 66).

Theorem 4.50.A

Theorem 4.50.A. Cauchy Integral Formula.

Let f be analytic everywhere inside and on simple closed contour C, parameterized in the positive sense. If z_{0} is any point interior to C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}} .
$$

Proof. Let C_{ρ} denote the positively oriented circle $\left|z-z_{0}\right|=\rho$, where ρ is small enough the C_{ρ} is interior to C (which can be done since C is a closed set and so $\mathbb{C} \backslash C$ is open with z_{0} as an interior point of the open set $\mathbb{C} \backslash C$; see Figure 66).

Theorem 4.50.A

Theorem 4.50.A. Cauchy Integral Formula.

Let f be analytic everywhere inside and on simple closed contour C, parameterized in the positive sense. If z_{0} is any point interior to C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}} .
$$

Proof. Let C_{ρ} denote the positively oriented circle $\left|z-z_{0}\right|=\rho$, where ρ is small enough the C_{ρ} is interior to C (which can be done since C is a closed set and so $\mathbb{C} \backslash C$ is open with z_{0} as an interior point of the open set $\mathbb{C} \backslash C$; see Figure 66).

Theorem 4.50.A (continued 1)

Proof (continued). The function $f(z) /\left(z-z_{0}\right)$ is analytic inside and on C except at z_{0}. So by the Principle of Deformation (Corollary 4.49.B),
$\int_{C} \frac{f(z) d z}{z-z_{0}}=\int_{C_{\rho}} \frac{f(z) d z}{z-z_{0}}$. So
$\int_{C} \frac{f(z) d z}{z-z_{0}}-f\left(z_{0}\right) \int_{C_{\rho}} \frac{d z}{z-z_{0}}=\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z$. Next,

$$
\begin{equation*}
\int_{C} \frac{f(z) d z}{z-z_{0}}-2 \pi i f\left(z_{0}\right)=\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z \tag{4}
\end{equation*}
$$

Since f is analytic, then it is continuous at z_{0} and so for all $\varepsilon>0$ there is $\delta>0$ such that if $\left|z-z_{0}\right|<\delta$ then $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon /(2 \pi)$.

Theorem 4.50.A (continued 1)

Proof (continued). The function $f(z) /\left(z-z_{0}\right)$ is analytic inside and on C except at z_{0}. So by the Principle of Deformation (Corollary 4.49.B),
$\int_{C} \frac{f(z) d z}{z-z_{0}}=\int_{C_{\rho}} \frac{f(z) d z}{z-z_{0}}$. So
$\int_{C} \frac{f(z) d z}{z-z_{0}}-f\left(z_{0}\right) \int_{C_{\rho}} \frac{d z}{z-z_{0}}=\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z$. Next,
$\int_{C_{\rho}} \frac{d z}{z-z_{0}}=2 \pi i$ by Exercise 42.10(b), so

$$
\begin{equation*}
\int_{C} \frac{f(z) d z}{z-z_{0}}-2 \pi i f\left(z_{0}\right)=\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z \tag{4}
\end{equation*}
$$

Since f is analytic, then it is continuous at z_{0} and so for all $\varepsilon>0$ there is $\delta>0$ such that if $\left|z-z_{0}\right|<\delta$ then $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon /(2 \pi)$. restriction on ρ above is that C_{ρ} is interior to C. Let $\rho^{\prime}=\min \{\rho, \delta / 2\}$ Then $C_{\rho^{\prime}}$ is interior to C and so the equations above involving C_{ρ} also hold for $C_{\rho^{\prime}}$.

Theorem 4.50.A (continued 1)

Proof (continued). The function $f(z) /\left(z-z_{0}\right)$ is analytic inside and on C except at z_{0}. So by the Principle of Deformation (Corollary 4.49.B),
$\int_{C} \frac{f(z) d z}{z-z_{0}}=\int_{C_{\rho}} \frac{f(z) d z}{z-z_{0}}$. So
$\int_{C} \frac{f(z) d z}{z-z_{0}}-f\left(z_{0}\right) \int_{C_{\rho}} \frac{d z}{z-z_{0}}=\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z$. Next,
$\int_{C_{\rho}} \frac{d z}{z-z_{0}}=2 \pi i$ by Exercise 42.10(b), so

$$
\begin{equation*}
\int_{C} \frac{f(z) d z}{z-z_{0}}-2 \pi i f\left(z_{0}\right)=\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z \tag{4}
\end{equation*}
$$

Since f is analytic, then it is continuous at z_{0} and so for all $\varepsilon>0$ there is $\delta>0$ such that if $\left|z-z_{0}\right|<\delta$ then $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon /(2 \pi)$. The only restriction on ρ above is that C_{ρ} is interior to C. Let $\rho^{\prime}=\min \{\rho, \delta / 2\}$. Then $C_{\rho^{\prime}}$ is interior to C and so the equations above involving C_{ρ} also hold for $C_{\rho^{\prime}}$.

Theorem 4.50.A (continued 2)

Proof (continued). Then for z on $C_{\rho^{\prime}}$ we have $\left|z-z_{0}\right|=\rho^{\prime} \leq \delta / 2<\delta$ and so $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon /(2 \pi)$; also the length of $C_{\rho^{\prime}}$ is $2 \pi \rho^{\prime}$ and so by Theorem 4.43.A,

$$
\left|\int_{C_{\rho^{\prime}}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right| \leq\left(\frac{\varepsilon /(2 \pi)}{\rho^{\prime}}\right)\left(2 \pi \rho^{\prime}\right)=\varepsilon .
$$

So by equation (4),

$$
\left|\int_{C_{\rho^{\prime}}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right|=\left|\int_{C} \frac{f(z) d z}{z-z_{0}}-2 \pi i f\left(z_{0}\right)\right|<\varepsilon .
$$

Since $\varepsilon>0$ is arbitrary, then the quantity $\int_{C} \frac{f(z) d z}{z-z_{0}}-2 \pi i f\left(z_{0}\right)$ must be 0 , and the result follows.

Theorem 4.50.A (continued 2)

Proof (continued). Then for z on $C_{\rho^{\prime}}$ we have $\left|z-z_{0}\right|=\rho^{\prime} \leq \delta / 2<\delta$ and so $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon /(2 \pi)$; also the length of $C_{\rho^{\prime}}$ is $2 \pi \rho^{\prime}$ and so by Theorem 4.43.A,

$$
\left|\int_{C_{\rho^{\prime}}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right| \leq\left(\frac{\varepsilon /(2 \pi)}{\rho^{\prime}}\right)\left(2 \pi \rho^{\prime}\right)=\varepsilon .
$$

So by equation (4),

$$
\left|\int_{C_{\rho^{\prime}}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right|=\left|\int_{C} \frac{f(z) d z}{z-z_{0}}-2 \pi i f\left(z_{0}\right)\right|<\varepsilon .
$$

Since $\varepsilon>0$ is arbitrary, then the quantity $\int_{C} \frac{f(z) d z}{z-z_{0}}-2 \pi i f\left(z_{0}\right)$ must be 0 , and the result follows.

