Complex Variables J

Chapter 4. Integrals
Section 4.51. An Extension of the Cauchy Integral Formula—Proofs of
Theorems
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Lemma 4.51.A

Lemma 4.51.A (continued 1)

Proof (continued). By the Cauchy Integral Formula (Theorem 4.50.A),
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Lemma 4.51.A

Lemma 4.51.A

Lemma 4.51.A. Let f be analytic inside and on a simple closed contour
C, taken in the positive sense. If z is any point interior to C then f’(z)

exists and ) .
fl(z _ (S)

= ds.
27i Je (s — 2)? °

Proof. Let d be the smallest distance from z to points s on C and

assume 0 < |Az| < d (see Figure 67); the minimum distance d exists
because C is a “compact set.”
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% FIGURE 67

Complex Variables January 26, 2020 3/6

Lemma 4.51.A

Lemma 4.51.A (continued 2)

Proof (continued).

1 1 1
T A e e N e L

1 Azf(s)ds
" 2ri e (s—z— Dz)(s—2)2 (*)

Next, let M denote the maximum value of |f(s)| on C (which exists since
|f(s)| is continuous and C is compact) and observe that since |s — z| > d

(by the choice of d as a minimum distance) and |Az| < d (by the choice
of Az) then

|s—z—Az| =|(s—z) — Az| > ||s — z| — |Az|| by Corollary 1.4.1
>|s—z|—|Az| > d—|Az| > 0.

Complex Variables January 26, 2020 5/6



Lemma 4.51.A (continued 3)

Proof (continued). Thus by Theorem 4.43.A
|Az|M
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where L is the length of C. So from (x), this implies

f(z-l—Az)—f(z)_i/ f(s)ds | _ 1 / Azf(s)ds
Az 21i Je (s —2)2| 27 |)c (s —z— Az)(s — 2)2
|Az|M !
~ 2n(d — |Az|)d?
Az|M
and so as Az — 0 we see that 27r(d| —Z||Az|)d2 L — 0. Hence,
f Az)—f 1 f
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Therefore, '(z) exists and has the claimed value. O



