Complex Variables

Chapter 4. Integrals

Section 4.52. Some Consequences of the Extension—Proofs of Theorems

Table of contents

(1) Theorem 4.52.1
(2) Corollary 4.52.A
(3) Theorem 4.52.2. Morera's Theorem
(4) Theorem 4.52.3. Cauchy's Inequality

Theorem 4.52.1

Theorem 4.52.1. If a function f is analytic at a given point, then its derivatives of all orders are analytic at that point too.

Proof. Let f be analytic at a point z_{0}. Then by the definition of analytic (namely, differentiable on a neighborhood of z_{0}), there is $\varepsilon>0$ such that f is analytic at all points of the disk $\left|z-z_{0}\right|<\varepsilon$.

Theorem 4.52.1

Theorem 4.52.1. If a function f is analytic at a given point, then its derivatives of all orders are analytic at that point too.

Proof. Let f be analytic at a point z_{0}. Then by the definition of analytic (namely, differentiable on a neighborhood of z_{0}), there is $\varepsilon>0$ such that f is analytic at all points of the disk $\left|z-z_{0}\right|<\varepsilon$. Let C_{0} be the positively oriented circle $\left|z-z_{0}\right|=\varepsilon / 2$. Then f is analytic inside and on C_{0} and for $n \in \mathbb{N}$, by the Extended Cauchy's Formula (Theorem 4.51.A), we have

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C_{0}} \frac{f(s) d s}{(s-z)^{n+1}} .
$$

This holds for all z where $\left|z-z_{0}\right|<\varepsilon / 2$.

Theorem 4.52.1

Theorem 4.52.1. If a function f is analytic at a given point, then its derivatives of all orders are analytic at that point too.

Proof. Let f be analytic at a point z_{0}. Then by the definition of analytic (namely, differentiable on a neighborhood of z_{0}), there is $\varepsilon>0$ such that f is analytic at all points of the disk $\left|z-z_{0}\right|<\varepsilon$. Let C_{0} be the positively oriented circle $\left|z-z_{0}\right|=\varepsilon / 2$. Then f is analytic inside and on C_{0} and for $n \in \mathbb{N}$, by the Extended Cauchy's Formula (Theorem 4.51.A), we have

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C_{0}} \frac{f(s) d s}{(s-z)^{n+1}} .
$$

This holds for all z where $\left|z-z_{0}\right|<\varepsilon / 2$. So $f^{(n)}(z)$ exists for all such z and hence $f^{(n-1)}(z)$ is differentiable for all $\left|z-z_{0}\right|<\varepsilon / 2$; that is, $f^{(n-1)}(z)$ is analytic at z_{0}. Since $n \in \mathbb{N}$ is arbitrary, we have that all orders of derivative of f are analytic at z_{0}, as claimed.

Theorem 4.52.1

Theorem 4.52.1. If a function f is analytic at a given point, then its derivatives of all orders are analytic at that point too.

Proof. Let f be analytic at a point z_{0}. Then by the definition of analytic (namely, differentiable on a neighborhood of z_{0}), there is $\varepsilon>0$ such that f is analytic at all points of the disk $\left|z-z_{0}\right|<\varepsilon$. Let C_{0} be the positively oriented circle $\left|z-z_{0}\right|=\varepsilon / 2$. Then f is analytic inside and on C_{0} and for $n \in \mathbb{N}$, by the Extended Cauchy's Formula (Theorem 4.51.A), we have

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C_{0}} \frac{f(s) d s}{(s-z)^{n+1}}
$$

This holds for all z where $\left|z-z_{0}\right|<\varepsilon / 2$. So $f^{(n)}(z)$ exists for all such z and hence $f^{(n-1)}(z)$ is differentiable for all $\left|z-z_{0}\right|<\varepsilon / 2$; that is, $f^{(n-1)}(z)$ is analytic at z_{0}. Since $n \in \mathbb{N}$ is arbitrary, we have that all orders of derivative of f are analytic at z_{0}, as claimed.

Corollary 4.52.A

Corollary 4.52.A. If a function $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$, is analytic at a point $z_{0}=x_{0}+i y_{0}$ then the component functions u and v have continuous partial derivatives of all orders at the point.
"Proof." We have by Theorem 2.21.A that
$f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$. Since all orders of derivatives $f^{(n)}\left(z_{0}\right)$ exist by Theorem 4.52 .1 then all partial derivatives of u and v with respect to x exist.

Corollary 4.52.A

Corollary 4.52.A. If a function $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$, is analytic at a point $z_{0}=x_{0}+i y_{0}$ then the component functions u and v have continuous partial derivatives of all orders at the point.
"Proof." We have by Theorem 2.21.A that
$f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$. Since all orders of derivatives $f^{(n)}\left(z_{0}\right)$ exist by Theorem 4.52.1 then all partial derivatives of u and v with respect to x exist. By the Cauchy-Riemann equations (also Theorem 2.21.A), $u_{x}=v_{y}$ and $u_{y}=-v_{x}$. From this, one can show that all partials with respect to y and all mixed partials of u and v exist (some details here would be welcome!). Hence, u and v have continuous partial derivatives of all orders at $\left(x_{0}, y_{0}\right)$.

Corollary 4.52.A

Corollary 4.52.A. If a function $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$, is analytic at a point $z_{0}=x_{0}+i y_{0}$ then the component functions u and v have continuous partial derivatives of all orders at the point.
"Proof." We have by Theorem 2.21.A that $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$. Since all orders of derivatives $f^{(n)}\left(z_{0}\right)$ exist by Theorem 4.52 .1 then all partial derivatives of u and v with respect to x exist. By the Cauchy-Riemann equations (also Theorem 2.21.A), $u_{x}=v_{y}$ and $u_{y}=-v_{x}$. From this, one can show that all partials with respect to y and all mixed partials of u and v exist (some details here would be welcome!). Hence, u and v have continuous partial derivatives of all orders at $\left(x_{0}, y_{0}\right)$.

Theorem 4.52.1

Theorem 4.52.2. Morera's Theorem.
Let f be continuous on a domain D. If $\int_{C} f(z) d z=0$ for every closed contour C in D, then f is analytic throughout D.

Proof. We have by Theorem 4.44.A that $f(z)$ has an antiderivative $F(z)$ throughout D (the (c) implies (a) part). So for each $z \in D, F^{\prime}(z)=f(z)$ and so F is differentiable on domain D and hence F is analytic on D. By Theorem 4.52.1, $f=F^{\prime}$ is analytic on D.

Theorem 4.52.1

Theorem 4.52.2. Morera's Theorem.

Let f be continuous on a domain D. If $\int_{C} f(z) d z=0$ for every closed contour C in D, then f is analytic throughout D.

Proof. We have by Theorem 4.44.A that $f(z)$ has an antiderivative $F(z)$ throughout D (the (c) implies (a) part). So for each $z \in D, F^{\prime}(z)=f(z)$ and so F is differentiable on domain D and hence F is analytic on D. By Theorem 4.52.1, $f=F^{\prime}$ is analytic on D.

Theorem 4.52.3

Theorem 4.52.3. Cauchy's Inequality.
Suppose that function f is analytic inside and on a positively oriented circle C_{R} centered at z_{0} with radius R. If M_{R} is the maximum value of $|f(z)|$ on C_{R}, then $\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}}$ for $n \in \mathbb{N}$.
Proof. By the Extended Cauchy Formula (Theorem 4.51.A),
$f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}$. Notice that for $z \in C_{R}$ we have $\left|z-z_{0}\right|=R$, and the length of C_{R} is $L=2 \pi R$.

Theorem 4.52.3

Theorem 4.52.3. Cauchy's Inequality.

 Suppose that function f is analytic inside and on a positively oriented circle C_{R} centered at z_{0} with radius R. If M_{R} is the maximum value of $|f(z)|$ on C_{R}, then $\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}}$ for $n \in \mathbb{N}$.Proof. By the Extended Cauchy Formula (Theorem 4.51.A), $f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}$. Notice that for $z \in C_{R}$ we have $\left|z-z_{0}\right|=R$, and the length of C_{R} is $L=2 \pi R$. So

Theorem 4.52.3

Theorem 4.52.3. Cauchy's Inequality.

 Suppose that function f is analytic inside and on a positively oriented circle C_{R} centered at z_{0} with radius R. If M_{R} is the maximum value of $|f(z)|$ on C_{R}, then $\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}}$ for $n \in \mathbb{N}$.Proof. By the Extended Cauchy Formula (Theorem 4.51.A), $f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}$. Notice that for $z \in C_{R}$ we have $\left|z-z_{0}\right|=R$, and the length of C_{R} is $L=2 \pi R$. So

$$
\begin{aligned}
\left|f^{(n)}\left(z_{0}\right)\right| & =\frac{n!}{2 \pi}\left|\int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}\right| \\
& \leq \frac{n!}{2 \pi}\left(\frac{M_{R}}{R^{n+1}}\right)(2 \pi R) \text { by Theorem 4.43.A } \\
& =\frac{n!M_{R}}{R^{n}}
\end{aligned}
$$

