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Chapter 4. Integrals
Section 4.52. Some Consequences of the Extension—Proofs of Theorems
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Theorem 4.52.1

Theorem 4.52.1

Theorem 4.52.1. If a function f is analytic at a given point, then its
derivatives of all orders are analytic at that point too.

Proof. Let f be analytic at a point z0. Then by the definition of analytic
(namely, differentiable on a neighborhood of z0), there is ε > 0 such that
f is analytic at all points of the disk |z − z0| < ε.

Let C0 be the positively
oriented circle |z − z0| = ε/2. Then f is analytic inside and on C0 and for
n ∈ N, by the Extended Cauchy’s Formula (Theorem 4.51.A), we have

f (n)(z) =
n!

2πi

∫
C0

f (s) ds

(s − z)n+1
.

This holds for all z where |z − z0| < ε/2. So f (n)(z) exists for all such z
and hence f (n−1)(z) is differentiable for all |z − z0| < ε/2; that is,
f (n−1)(z) is analytic at z0. Since n ∈ N is arbitrary, we have that all orders
of derivative of f are analytic at z0, as claimed.

() Complex Variables April 20, 2020 3 / 6



Theorem 4.52.1

Theorem 4.52.1

Theorem 4.52.1. If a function f is analytic at a given point, then its
derivatives of all orders are analytic at that point too.

Proof. Let f be analytic at a point z0. Then by the definition of analytic
(namely, differentiable on a neighborhood of z0), there is ε > 0 such that
f is analytic at all points of the disk |z − z0| < ε. Let C0 be the positively
oriented circle |z − z0| = ε/2. Then f is analytic inside and on C0 and for
n ∈ N, by the Extended Cauchy’s Formula (Theorem 4.51.A), we have

f (n)(z) =
n!

2πi

∫
C0

f (s) ds

(s − z)n+1
.

This holds for all z where |z − z0| < ε/2.

So f (n)(z) exists for all such z
and hence f (n−1)(z) is differentiable for all |z − z0| < ε/2; that is,
f (n−1)(z) is analytic at z0. Since n ∈ N is arbitrary, we have that all orders
of derivative of f are analytic at z0, as claimed.

() Complex Variables April 20, 2020 3 / 6



Theorem 4.52.1

Theorem 4.52.1

Theorem 4.52.1. If a function f is analytic at a given point, then its
derivatives of all orders are analytic at that point too.

Proof. Let f be analytic at a point z0. Then by the definition of analytic
(namely, differentiable on a neighborhood of z0), there is ε > 0 such that
f is analytic at all points of the disk |z − z0| < ε. Let C0 be the positively
oriented circle |z − z0| = ε/2. Then f is analytic inside and on C0 and for
n ∈ N, by the Extended Cauchy’s Formula (Theorem 4.51.A), we have

f (n)(z) =
n!

2πi

∫
C0

f (s) ds

(s − z)n+1
.

This holds for all z where |z − z0| < ε/2. So f (n)(z) exists for all such z
and hence f (n−1)(z) is differentiable for all |z − z0| < ε/2; that is,
f (n−1)(z) is analytic at z0. Since n ∈ N is arbitrary, we have that all orders
of derivative of f are analytic at z0, as claimed.

() Complex Variables April 20, 2020 3 / 6



Theorem 4.52.1

Theorem 4.52.1

Theorem 4.52.1. If a function f is analytic at a given point, then its
derivatives of all orders are analytic at that point too.

Proof. Let f be analytic at a point z0. Then by the definition of analytic
(namely, differentiable on a neighborhood of z0), there is ε > 0 such that
f is analytic at all points of the disk |z − z0| < ε. Let C0 be the positively
oriented circle |z − z0| = ε/2. Then f is analytic inside and on C0 and for
n ∈ N, by the Extended Cauchy’s Formula (Theorem 4.51.A), we have

f (n)(z) =
n!

2πi

∫
C0

f (s) ds

(s − z)n+1
.

This holds for all z where |z − z0| < ε/2. So f (n)(z) exists for all such z
and hence f (n−1)(z) is differentiable for all |z − z0| < ε/2; that is,
f (n−1)(z) is analytic at z0. Since n ∈ N is arbitrary, we have that all orders
of derivative of f are analytic at z0, as claimed.

() Complex Variables April 20, 2020 3 / 6



Corollary 4.52.A

Corollary 4.52.A

Corollary 4.52.A. If a function f (z) = u(x , y) + iv(x , y), where
z = x + iy , is analytic at a point z0 = x0 + iy0 then the component
functions u and v have continuous partial derivatives of all orders at the
point.

“Proof.” We have by Theorem 2.21.A that
f ′(z0) = ux(x0, y0) + ivx(x0, y0). Since all orders of derivatives f (n)(z0)
exist by Theorem 4.52.1 then all partial derivatives of u and v with respect
to x exist.

By the Cauchy-Riemann equations (also Theorem 2.21.A),
ux = vy and uy = −vx . From this, one can show that all partials with
respect to y and all mixed partials of u and v exist (some details here
would be welcome!). Hence, u and v have continuous partial derivatives of
all orders at (x0, y0).
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Theorem 4.52.2. Morera’s Theorem

Theorem 4.52.1

Theorem 4.52.2. Morera’s Theorem.
Let f be continuous on a domain D. If

∫
C f (z) dz = 0 for every closed

contour C in D, then f is analytic throughout D.

Proof. We have by Theorem 4.44.A that f (z) has an antiderivative F (z)
throughout D (the (c) implies (a) part). So for each z ∈ D, F ′(z) = f (z)
and so F is differentiable on domain D and hence F is analytic on D. By
Theorem 4.52.1, f = F ′ is analytic on D.
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Theorem 4.52.3. Cauchy’s Inequality

Theorem 4.52.3

Theorem 4.52.3. Cauchy’s Inequality.
Suppose that function f is analytic inside and on a positively oriented
circle CR centered at z0 with radius R. If MR is the maximum value of

|f (z)| on CR , then |f (n)(z0)| ≤
n!MR

Rn
for n ∈ N.

Proof. By the Extended Cauchy Formula (Theorem 4.51.A),

f (n)(z0) =
n!

2πi

∫
C

f (z) dz

(z − z0)n+1
. Notice that for z ∈ CR we have

|z − z0| = R, and the length of CR is L = 2πR.

So

|f (n)(z0)| =
n!

2π

∣∣∣∣∫
C

f (z) dz

(z − z0)n+1

∣∣∣∣
≤ n!

2π

(
MR

Rn+1

)
(2πR) by Theorem 4.43.A

=
n!MR

Rn
.
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