Complex Variables

Chapter 4. Integrals Section 4.53. Liouville's Theorem and the Fundamental Theorem of Algebra—Proofs of Theorems

2 Corollary 4.53.2. The Fundamental Theorem of Algebra

Theorem 4.53.1. Liouville's Theorem.

If a function f is entire and bounded in the whole complex plane, then f is constant throughout the entire complex plane.

Proof. Let f be a bounded entire function, say $|f(z)| \le M$ for all $z \in \mathbb{C}$. By Cauchy's Inequality (Theorem 4.52.3) with n = 1, we have that for any $z_0 \in \mathbb{C}$ and, since f is entire, for all R > 0, it must be that $|f'(z_0)| \le M/R$.

Theorem 4.53.1. Liouville's Theorem.

If a function f is entire and bounded in the whole complex plane, then f is constant throughout the entire complex plane.

Proof. Let f be a bounded entire function, say $|f(z)| \le M$ for all $z \in \mathbb{C}$. By Cauchy's Inequality (Theorem 4.52.3) with n = 1, we have that for any $z_0 \in \mathbb{C}$ and, since f is entire, for all R > 0, it must be that $|f'(z_0)| \le M/R$. Since this holds for all R > 0, it must be that $f'(z_0) = 0$. Since $z_0 \in \mathbb{C}$ is arbitrary, we can conclude that f'(z) = 0 for all $z \in \mathbb{C}$. So by Theorem 2.24.A, f is constant throughout \mathbb{C} .

Theorem 4.53.1. Liouville's Theorem.

If a function f is entire and bounded in the whole complex plane, then f is constant throughout the entire complex plane.

Proof. Let f be a bounded entire function, say $|f(z)| \leq M$ for all $z \in \mathbb{C}$. By Cauchy's Inequality (Theorem 4.52.3) with n = 1, we have that for any $z_0 \in \mathbb{C}$ and, since f is entire, for all R > 0, it must be that $|f'(z_0)| \leq M/R$. Since this holds for all R > 0, it must be that $f'(z_0) = 0$. Since $z_0 \in \mathbb{C}$ is arbitrary, we can conclude that f'(z) = 0 for all $z \in \mathbb{C}$. So by Theorem 2.24.A, f is constant throughout \mathbb{C} .

Theorem 4.53.2. The Fundamental Theorem of Algebra. Any complex polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$, where $a_n \neq 0$, of degree $n \ge 1$ has at least one zero. That is, there exists at least one point $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.

Proof. ASSUME no such z_0 exists and that P(z) is nonzero throughout \mathbb{C} . Then by Lemma 2.24.A, the function 1/P(z) is analytic throughout \mathbb{C} ; that is, 1/P(z) is an entire function.

Theorem 4.53.2. The Fundamental Theorem of Algebra. Any complex polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$, where $a_n \neq 0$, of degree $n \ge 1$ has at least one zero. That is, there exists at least one point $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.

Proof. ASSUME no such z_0 exists and that P(z) is nonzero throughout \mathbb{C} . Then by Lemma 2.24.A, the function 1/P(z) is analytic throughout \mathbb{C} ; that is, 1/P(z) is an entire function.

We claim that 1/P(z) is bounded. Notice that

$$P(z) = \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} + a_n\right) z^n.$$

Since

$$\lim_{z \to \infty} \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} \right) = 0,$$

then for $\varepsilon = |a_n|/2$ there is R > 0 such that for all |z| > R we have...

Theorem 4.53.2. The Fundamental Theorem of Algebra. Any complex polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$, where $a_n \neq 0$, of degree $n \ge 1$ has at least one zero. That is, there exists at least one point $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.

Proof. ASSUME no such z_0 exists and that P(z) is nonzero throughout \mathbb{C} . Then by Lemma 2.24.A, the function 1/P(z) is analytic throughout \mathbb{C} ; that is, 1/P(z) is an entire function.

We claim that 1/P(z) is bounded. Notice that

$$P(z) = \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} + a_n\right) z^n.$$

Since

$$\lim_{z \to \infty} \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} \right) = 0,$$

then for $\varepsilon = |a_n|/2$ there is R > 0 such that for all |z| > R we have...

Corollary 4.53.2. The Fundamental Theorem of Algebra

Theorem 4.53.2 (continued 1)

Proof (continued). ...

$$\left|\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z}\right| < \frac{|a_n|}{2} = \varepsilon.$$
 So for $|z| > R$,

$$\begin{aligned} \left| \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} \right) + a_n \right| \\ \ge \left| \left| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} \right| - |a_n| \right| \text{ by Corollary 1.4.1} \\ > |a_n|/2. \end{aligned}$$

So

$$P(z)| = \left| \left\{ \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} \right) + a_n \right\} z^n \right| \\ = \left| \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} \right) + a_n \right| |z|^n \\ > |a_n||z|^n/2 > |a_n|R^n/2 \text{ for } |z| > R.$$

Corollary 4.53.2. The Fundamental Theorem of Algebra

Theorem 4.53.2 (continued 1)

Proof (continued). ...

$$\left|\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z}\right| < \frac{|a_n|}{2} = \varepsilon.$$

So for $|z| > R$,

$$\left| \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} \right) + a_n \right|$$

$$\geq \left| \left| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} \right| - |a_n| \right|$$
 by Corollary 1.4.1
$$> |a_n|/2.$$

So

$$P(z)| = \left| \left\{ \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} \right) + a_n \right\} z^n \right| \\ = \left| \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{z} \right) + a_n \right| |z|^n \\ > |a_n||z|^n/2 > |a_n|R^n/2 \text{ for } |z| > R.$$

Theorem 4.53.2 (continued 2)

Theorem 4.53.2. The Fundamental Theorem of Algebra. Any complex polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$, where $a_n \neq 0$, of degree $n \ge 1$ has at least one zero. That is, there exists at least one point $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.

Proof (continued). So $|1/P(z)| < 2/(|a_n|R^n)$ for |z| > R. Now 1/P(z) is continuous by assumption and so by Theorem 2.18.3, |1/P(z)| is bounded, by say M, on the closed and bounded set $|z| \le R$. Therefore

$$\left|\frac{1}{P(z)}\right| \le \begin{cases} |a_n|R^n/2 & \text{for } |z| > R\\ M & \text{for } |z| \le R \end{cases}$$

and 1/P(z) is a bounded entire function.

Theorem 4.53.2 (continued 2)

Theorem 4.53.2. The Fundamental Theorem of Algebra. Any complex polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$, where $a_n \neq 0$, of degree $n \ge 1$ has at least one zero. That is, there exists at least one point $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.

Proof (continued). So $|1/P(z)| < 2/(|a_n|R^n)$ for |z| > R. Now 1/P(z) is continuous by assumption and so by Theorem 2.18.3, |1/P(z)| is bounded, by say M, on the closed and bounded set $|z| \le R$. Therefore

$$\left|\frac{1}{P(z)}\right| \leq \begin{cases} |a_n|R^n/2 & \text{for } |z| > R\\ M & \text{for } |z| \le R \end{cases}$$

and 1/P(z) is a bounded entire function.

But Liouville's Theorem then implies that 1/P(z) is constant, a CONTRADICTION. So the assumption that P(z) is nonzero throughout \mathbb{C} is false and there must be some $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.

Theorem 4.53.2 (continued 2)

Theorem 4.53.2. The Fundamental Theorem of Algebra. Any complex polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$, where $a_n \neq 0$, of degree $n \ge 1$ has at least one zero. That is, there exists at least one point $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.

Proof (continued). So $|1/P(z)| < 2/(|a_n|R^n)$ for |z| > R. Now 1/P(z) is continuous by assumption and so by Theorem 2.18.3, |1/P(z)| is bounded, by say M, on the closed and bounded set $|z| \le R$. Therefore

$$\frac{1}{P(z)} \le \begin{cases} |a_n| R^n/2 & \text{ for } |z| > R \\ M & \text{ for } |z| \le R \end{cases}$$

and 1/P(z) is a bounded entire function.

But Liouville's Theorem then implies that 1/P(z) is constant, a CONTRADICTION. So the assumption that P(z) is nonzero throughout \mathbb{C} is false and there must be some $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.