Complex Variables

Chapter 4. Integrals

Section 4.53. Liouville's Theorem and the Fundamental Theorem of Algebra—Proofs of Theorems

Table of contents

(1) Theorem 4.53.1. Liouville's Theorem
(2) Corollary 4.53.2. The Fundamental Theorem of Algebra

Theorem 4.53.1

Theorem 4.53.1. Liouville's Theorem.
If a function f is entire and bounded in the whole complex plane, then f is constant throughout the entire complex plane.

Proof. Let f be a bounded entire function, say $|f(z)| \leq M$ for all $z \in \mathbb{C}$. By Cauchy's Inequality (Theorem 4.52.3) with $n=1$, we have that for any $z_{0} \in \mathbb{C}$ and, since f is entire, for all $R>0$, it must be that $f^{\prime}\left(z_{0}\right) \mid \leq M / R$.

Theorem 4.53.1

Theorem 4.53.1. Liouville's Theorem.
If a function f is entire and bounded in the whole complex plane, then f is constant throughout the entire complex plane.

Proof. Let f be a bounded entire function, say $|f(z)| \leq M$ for all $z \in \mathbb{C}$. By Cauchy's Inequality (Theorem 4.52.3) with $n=1$, we have that for any $z_{0} \in \mathbb{C}$ and, since f is entire, for all $R>0$, it must be that $\left|f^{\prime}\left(z_{0}\right)\right| \leq M / R$. Since this holds for all $R>0$, it must be that $f^{\prime}\left(z_{0}\right)=0$.
Since $z_{0} \in \mathbb{C}$ is arbitrary, we can conclude that $f^{\prime}(z)=0$ for all $z \in \mathbb{C}$. So by Theorem 2.24.A, f is constant throughout \mathbb{C}.

Theorem 4.53.1

Theorem 4.53.1. Liouville's Theorem.

If a function f is entire and bounded in the whole complex plane, then f is constant throughout the entire complex plane.

Proof. Let f be a bounded entire function, say $|f(z)| \leq M$ for all $z \in \mathbb{C}$. By Cauchy's Inequality (Theorem 4.52.3) with $n=1$, we have that for any $z_{0} \in \mathbb{C}$ and, since f is entire, for all $R>0$, it must be that $\left|f^{\prime}\left(z_{0}\right)\right| \leq M / R$. Since this holds for all $R>0$, it must be that $f^{\prime}\left(z_{0}\right)=0$. Since $z_{0} \in \mathbb{C}$ is arbitrary, we can conclude that $f^{\prime}(z)=0$ for all $z \in \mathbb{C}$. So by Theorem 2.24.A, f is constant throughout \mathbb{C}.

Theorem 4.53.2

Theorem 4.53.2. The Fundamental Theorem of Algebra. Any complex polynomial $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$, where $a_{n} \neq 0$, of degree $n \geq 1$ has at least one zero. That is, there exists at least one point $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=0$.

Proof. ASSUME no such z_{0} exists and that $P(z)$ is nonzero throughout \mathbb{C}. Then by Lemma 2.24.A, the function $1 / P(z)$ is analytic throughout \mathbb{C}; that is, $1 / P(z)$ is an entire function.

Theorem 4.53.2

Theorem 4.53.2. The Fundamental Theorem of Algebra. Any complex polynomial $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$, where $a_{n} \neq 0$, of degree $n \geq 1$ has at least one zero. That is, there exists at least one point $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=0$.

Proof. ASSUME no such z_{0} exists and that $P(z)$ is nonzero throughout \mathbb{C}. Then by Lemma 2.24.A, the function $1 / P(z)$ is analytic throughout \mathbb{C}; that is, $1 / P(z)$ is an entire function.

We claim that $1 / P(z)$ is bounded. Notice that

$$
P(z)=\left(\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\frac{a_{2}}{z^{n-2}}+\cdots+\frac{a_{n-1}}{z}+a_{n}\right) z^{n}
$$

Since

then for $\varepsilon=\left|a_{n}\right| / 2$ there is $R>0$ such that for all $|z|>R$ we have.

Theorem 4.53.2

Theorem 4.53.2. The Fundamental Theorem of Algebra.

Any complex polynomial $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$, where $a_{n} \neq 0$, of degree $n \geq 1$ has at least one zero. That is, there exists at least one point $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=0$.

Proof. ASSUME no such z_{0} exists and that $P(z)$ is nonzero throughout \mathbb{C}. Then by Lemma 2.24.A, the function $1 / P(z)$ is analytic throughout \mathbb{C}; that is, $1 / P(z)$ is an entire function.

We claim that $1 / P(z)$ is bounded. Notice that

$$
P(z)=\left(\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\frac{a_{2}}{z^{n-2}}+\cdots+\frac{a_{n-1}}{z}+a_{n}\right) z^{n}
$$

Since

$$
\lim _{z \rightarrow \infty}\left(\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\frac{a_{2}}{z^{n-2}}+\cdots+\frac{a_{n-1}}{z}\right)=0
$$

then for $\varepsilon=\left|a_{n}\right| / 2$ there is $R>0$ such that for all $|z|>R$ we have...

Theorem 4.53.2 (continued 1)

Proof (continued). ...

$$
\left|\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\frac{a_{2}}{z^{n-2}}+\cdots+\frac{a_{n-1}}{z}\right|<\frac{\left|a_{n}\right|}{2}=\varepsilon
$$

So for $|z|>R$,

So

$$
\begin{aligned}
|P(z)| & =\left|\left\{\left(\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\frac{a_{2}}{z^{n-2}}+\cdots+\frac{a_{n-1}}{z}\right)+a_{n}\right\} z^{n}\right| \\
& =\left|\left(\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\frac{a_{2}}{z^{n-2}}+\cdots+\frac{a_{n-1}}{z}\right)+a_{n}\right||z|^{n} \\
& >\left|a_{n}\right||z|^{n} / 2>\left|a_{n}\right| R^{n} / 2 \text { for }|z|>R .
\end{aligned}
$$

Theorem 4.53.2 (continued 1)

Proof (continued). ...

$$
\left|\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\frac{a_{2}}{z^{n-2}}+\cdots+\frac{a_{n-1}}{z}\right|<\frac{\left|a_{n}\right|}{2}=\varepsilon
$$

So for $|z|>R$,

So

$$
\begin{aligned}
|P(z)| & =\left|\left\{\left(\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\frac{a_{2}}{z^{n-2}}+\cdots+\frac{a_{n-1}}{z}\right)+a_{n}\right\} z^{n}\right| \\
& =\left|\left(\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\frac{a_{2}}{z^{n-2}}+\cdots+\frac{a_{n-1}}{z}\right)+a_{n}\right||z|^{n} \\
& >\left|a_{n}\right||z|^{n} / 2>\left|a_{n}\right| R^{n} / 2 \text { for }|z|>R .
\end{aligned}
$$

Theorem 4.53.2 (continued 2)

Theorem 4.53.2. The Fundamental Theorem of Algebra.
Any complex polynomial $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$, where $a_{n} \neq 0$, of degree $n \geq 1$ has at least one zero. That is, there exists at least one point $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=0$.

Proof (continued). So $|1 / P(z)|<2 /\left(\left|a_{n}\right| R^{n}\right)$ for $|z|>R$. Now $1 / P(z)$ is continuous by assumption and so by Theorem 2.18.3, $|1 / P(z)|$ is bounded, by say M, on the closed and bounded set $|z| \leq R$. Therefore

and $1 / P(z)$ is a bounded entire function.

Theorem 4.53.2 (continued 2)

Theorem 4.53.2. The Fundamental Theorem of Algebra.
Any complex polynomial $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$, where $a_{n} \neq 0$, of degree $n \geq 1$ has at least one zero. That is, there exists at least one point $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=0$.

Proof (continued). So $|1 / P(z)|<2 /\left(\left|a_{n}\right| R^{n}\right)$ for $|z|>R$. Now $1 / P(z)$ is continuous by assumption and so by Theorem 2.18.3, $|1 / P(z)|$ is bounded, by say M, on the closed and bounded set $|z| \leq R$. Therefore

$$
\left|\frac{1}{P(z)}\right| \leq\left\{\begin{array}{cc}
\left|a_{n}\right| R^{n} / 2 & \text { for }|z|>R \\
M & \text { for }|z| \leq R
\end{array}\right.
$$

and $1 / P(z)$ is a bounded entire function.
But Liouville's Theorem then implies that $1 / P(z)$ is constant, a CONTRADICTION. So the assumption that $P(z)$ is nonzero throughout \mathbb{C} is false and there must be some $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=0$.

Theorem 4.53.2 (continued 2)

Theorem 4.53.2. The Fundamental Theorem of Algebra.
Any complex polynomial $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$, where $a_{n} \neq 0$, of degree $n \geq 1$ has at least one zero. That is, there exists at least one point $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=0$.

Proof (continued). So $|1 / P(z)|<2 /\left(\left|a_{n}\right| R^{n}\right)$ for $|z|>R$. Now $1 / P(z)$ is continuous by assumption and so by Theorem 2.18.3, $|1 / P(z)|$ is bounded, by say M, on the closed and bounded set $|z| \leq R$. Therefore

$$
\left|\frac{1}{P(z)}\right| \leq\left\{\begin{array}{cc}
\left|a_{n}\right| R^{n} / 2 & \text { for }|z|>R \\
M & \text { for }|z| \leq R
\end{array}\right.
$$

and $1 / P(z)$ is a bounded entire function.
But Liouville's Theorem then implies that $1 / P(z)$ is constant, a CONTRADICTION. So the assumption that $P(z)$ is nonzero throughout \mathbb{C} is false and there must be some $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=0$.

