Complex Variables

Chapter 4. Integrals

Section 4.54. Maximum Modulus Principle—Proofs of Theorems

Table of contents

(1) Lemma 4.54.A
(2) Corollary 4.54.C. The Maximum Modulus Theorem
(3) Theorem 4.54.D. Maximum Modulus Theorem, Alternative Version
(4) Theorem 4.54.E

Lemma 4.54.A

Lemma 4.54.A. Suppose that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ at each point z in some neighborhood $\left|z-z_{0}\right|<\varepsilon$ in which f is analytic. Then $f(z)$ has the constant value $f\left(z_{0}\right)$ throughout that neighborhood.

Proof. Let $z_{1} \neq z_{0}$ be in the ε-neighborhood of z_{0}. Let $\rho=\left|z_{1}-z_{0}\right|$. Let C_{ρ} be the positively oriented circle $\left|z-z_{0}\right|=\rho$. Then f is analytic on and inside C_{ρ} and so by the Cauchy Integral Formula (Theorem 4.50.A),
$f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C_{\rho}} \frac{f(z) d z}{z-z_{0}}$

Lemma 4.54.A

Lemma 4.54.A. Suppose that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ at each point z in some neighborhood $\left|z-z_{0}\right|<\varepsilon$ in which f is analytic. Then $f(z)$ has the constant value $f\left(z_{0}\right)$ throughout that neighborhood.

Proof. Let $z_{1} \neq z_{0}$ be in the ε-neighborhood of z_{0}. Let $\rho=\left|z_{1}-z_{0}\right|$. Let C_{ρ} be the positively oriented circle $\left|z-z_{0}\right|=\rho$. Then f is analytic on and inside C_{ρ} and so by the Cauchy Integral Formula (Theorem 4.50.A),
$f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C_{\rho}} \frac{f(z) d z}{z-z_{0}}$. Parameterize C_{ρ} as $z=z_{0}+\rho e^{i \theta}, \theta \in[0,2 \pi]$.
Then
$f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+\rho e^{i \theta}\right)}{\left(z_{0}+\rho e^{i \theta}\right)-z_{0}} i \rho e^{i \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+\rho e^{i \theta}\right) d \theta$.
We then have from (2) that

$$
\begin{equation*}
\left|f\left(z_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \text { by Lemma 4.43.A. } \tag{3}
\end{equation*}
$$

Lemma 4.54.A

Lemma 4.54.A. Suppose that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ at each point z in some neighborhood $\left|z-z_{0}\right|<\varepsilon$ in which f is analytic. Then $f(z)$ has the constant value $f\left(z_{0}\right)$ throughout that neighborhood.

Proof. Let $z_{1} \neq z_{0}$ be in the ε-neighborhood of z_{0}. Let $\rho=\left|z_{1}-z_{0}\right|$. Let C_{ρ} be the positively oriented circle $\left|z-z_{0}\right|=\rho$. Then f is analytic on and inside C_{ρ} and so by the Cauchy Integral Formula (Theorem 4.50.A),
$f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C_{\rho}} \frac{f(z) d z}{z-z_{0}}$. Parameterize C_{ρ} as $z=z_{0}+\rho e^{i \theta}, \theta \in[0,2 \pi]$.
Then

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+\rho e^{i \theta}\right)}{\left(z_{0}+\rho e^{i \theta}\right)-z_{0}} i \rho e^{i \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+\rho e^{i \theta}\right) d \theta . \tag{2}
\end{equation*}
$$

We then have from (2) that

$$
\begin{equation*}
\left|f\left(z_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \text { by Lemma 4.43.A. } \tag{3}
\end{equation*}
$$

Lemma 4.51.A (continued)

Proof (continued). On the other hand, by hypothesis,

$$
\begin{aligned}
& \left|f\left(z_{0}+\rho e^{i \theta}\right)\right| \leq\left|f\left(z_{0}\right)\right| \text { for } \theta \in[0,2 \pi] \text { so that } \\
& \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \leq \int_{0}^{2 \pi}\left|f\left(z_{0}\right)\right| d \theta=2 \pi\left|f\left(z_{0}\right)\right| \text {, or }
\end{aligned}
$$

$$
\begin{equation*}
\left|f\left(z_{0}\right)\right| \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \tag{5}
\end{equation*}
$$

Lemma 4.51.A (continued)

Proof (continued). On the other hand, by hypothesis, $\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| \leq\left|f\left(z_{0}\right)\right|$ for $\theta \in[0,2 \pi]$ so that $\int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \leq \int_{0}^{2 \pi}\left|f\left(z_{0}\right)\right| d \theta=2 \pi\left|f\left(z_{0}\right)\right|$, or

$$
\begin{equation*}
\left|f\left(z_{0}\right)\right| \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \tag{5}
\end{equation*}
$$

Combining equations (3) and (5) gives $\left|f\left(z_{0}\right)\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta$, or $\int_{0}^{2 \pi}\left(\left|f\left(z_{0}\right)\right|-\left|f\left(z_{0}+\rho e^{i \theta}\right)\right|\right) d \theta=0$. Now the integrand is nonnegative by hypothesis and is a continuous function of θ on $[0,2 \pi]$. If the integral of a continuous real-valued nonnegative function over some interval is 0 then the function must be identically 0 (yes, we could use a reference for this).

Lemma 4.51.A (continued)

Proof (continued). On the other hand, by hypothesis, $\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| \leq\left|f\left(z_{0}\right)\right|$ for $\theta \in[0,2 \pi]$ so that $\int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \leq \int_{0}^{2 \pi}\left|f\left(z_{0}\right)\right| d \theta=2 \pi\left|f\left(z_{0}\right)\right|$, or

$$
\begin{equation*}
\left|f\left(z_{0}\right)\right| \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \tag{5}
\end{equation*}
$$

Combining equations (3) and (5) gives $\left|f\left(z_{0}\right)\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta$, or $\int_{0}^{2 \pi}\left(\left|f\left(z_{0}\right)\right|-\left|f\left(z_{0}+\rho e^{i \theta}\right)\right|\right) d \theta=0$. Now the integrand is nonnegative by hypothesis and is a continuous function of θ on $[0,2 \pi]$. If the integral of a continuous real-valued nonnegative function over some interval is 0 then the function must be identically 0 (yes, we could use a reference for this). So $\left|f\left(z_{0}\right)\right|=\left|f\left(z_{0}+\rho e^{i \theta}\right)\right|$ for all $\theta \in[0,2 \pi]$. That is,
$\left|f\left(z_{0}\right)\right|=|f(z)|$ for all $z \in C_{\rho}$. In particular, $\left|f\left(z_{0}\right)\right|=\left|f\left(z_{1}\right)\right|$. Since z_{1} is
an arbitrary point in the ε-neighborhood of z_{0}, then $\left|f\left(z_{0}\right)\right|=|f(z)|$ for all z such that $\left|z-z_{0}\right|<\varepsilon$. So by Example 2.25.4/Theorem 2.25.B, $f(z)=f\left(z_{0}\right)$ for all z satisfying $\left|z-z_{0}\right|<\varepsilon$, as claimed.

Lemma 4.51.A (continued)

Proof (continued). On the other hand, by hypothesis, $\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| \leq\left|f\left(z_{0}\right)\right|$ for $\theta \in[0,2 \pi]$ so that $\int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \leq \int_{0}^{2 \pi}\left|f\left(z_{0}\right)\right| d \theta=2 \pi\left|f\left(z_{0}\right)\right|$, or

$$
\begin{equation*}
\left|f\left(z_{0}\right)\right| \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \tag{5}
\end{equation*}
$$

Combining equations (3) and (5) gives $\left|f\left(z_{0}\right)\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta$, or $\int_{0}^{2 \pi}\left(\left|f\left(z_{0}\right)\right|-\left|f\left(z_{0}+\rho e^{i \theta}\right)\right|\right) d \theta=0$. Now the integrand is nonnegative by hypothesis and is a continuous function of θ on $[0,2 \pi]$. If the integral of a continuous real-valued nonnegative function over some interval is 0 then the function must be identically 0 (yes, we could use a reference for this). So $\left|f\left(z_{0}\right)\right|=\left|f\left(z_{0}+\rho e^{i \theta}\right)\right|$ for all $\theta \in[0,2 \pi]$. That is, $\left|f\left(z_{0}\right)\right|=|f(z)|$ for all $z \in C_{\rho}$. In particular, $\left|f\left(z_{0}\right)\right|=\left|f\left(z_{1}\right)\right|$. Since z_{1} is an arbitrary point in the ε-neighborhood of z_{0}, then $\left|f\left(z_{0}\right)\right|=|f(z)|$ for all z such that $\left|z-z_{0}\right|<\varepsilon$. So by Example 2.25.4/Theorem 2.25.B, $f(z)=f\left(z_{0}\right)$ for all z satisfying $\left|z-z_{0}\right|<\varepsilon$, as claimed.

Theorem 4.54.C

Theorem 4.54.C. The Maximum Modulus Theorem.
If a function f is analytic and not constant in a given domain D, then $|f(z)|$ has no maximum value in D. That is, there is no point $z_{0} \in D$ such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for all points $z \in D$.
Proof. Let f be analytic and nonconstant on D. ASSUME $|f(z)|$ has a maximum on D of $\left|f\left(z_{0}\right)\right|$ for some $z_{0} \in D$.

Theorem 4.54.C

Theorem 4.54.C. The Maximum Modulus Theorem.
If a function f is analytic and not constant in a given domain D, then $|f(z)|$ has no maximum value in D. That is, there is no point $z_{0} \in D$ such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for all points $z \in D$.
Proof. Let f be analytic and nonconstant on D. ASSUME $|f(z)|$ has a maximum on D of $\left|f\left(z_{0}\right)\right|$ for some $z_{0} \in D$. Let P be any point in D. Let L be a polygonal line lying in D and joining z_{0} and P (such a polygonal line exists since D is open and connected by Theorem II.2.3 in my online notes for Complex Analysis 1 [MATH 5510] on II.2. Connectedness). If $D \neq \mathbb{C}$, then let d be the shortest distance from the points on L to the boundary of D (such d exists by Theorem II.5.17 in my online Complex Analysis notes on II.5. Continuity). If $D=\mathbb{C}$, let $d=1$.

Theorem 4.54.C

Theorem 4.54.C. The Maximum Modulus Theorem.
If a function f is analytic and not constant in a given domain D, then $|f(z)|$ has no maximum value in D. That is, there is no point $z_{0} \in D$ such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for all points $z \in D$.
Proof. Let f be analytic and nonconstant on D. ASSUME $|f(z)|$ has a maximum on D of $\left|f\left(z_{0}\right)\right|$ for some $z_{0} \in D$. Let P be any point in D. Let L be a polygonal line lying in D and joining z_{0} and P (such a polygonal line exists since D is open and connected by Theorem II.2.3 in my online notes for Complex Analysis 1 [MATH 5510] on II.2. Connectedness). If $D \neq \mathbb{C}$, then let d be the shortest distance from the points on L to the boundary of D (such d exists by Theorem II.5.17 in my online Complex Analysis notes on II.5. Continuity). If $D=\mathbb{C}$, let $d=1$. Next, since L is of finite length, there are complex numbers on $L, z_{0}, z_{1}, \ldots, z_{n}$ such that $\left|z_{k}-z_{k-1}\right|<d$ for $k=1,2, \ldots, n$. Define neighborhood N_{k} of z_{k} as $N_{k}=\left\{z \in \mathbb{C}| | z-z_{k} \mid<d\right\}$. Then the N_{k} are all subsets of domain D, and the center of N_{k} lies in N_{k-1} for $k=1,2, \ldots, n$. See Figure 71.

Theorem 4.54.C

Theorem 4.54.C. The Maximum Modulus Theorem.

If a function f is analytic and not constant in a given domain D, then $|f(z)|$ has no maximum value in D. That is, there is no point $z_{0} \in D$ such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for all points $z \in D$.
Proof. Let f be analytic and nonconstant on D. ASSUME $|f(z)|$ has a maximum on D of $\left|f\left(z_{0}\right)\right|$ for some $z_{0} \in D$. Let P be any point in D. Let L be a polygonal line lying in D and joining z_{0} and P (such a polygonal line exists since D is open and connected by Theorem II.2.3 in my online notes for Complex Analysis 1 [MATH 5510] on II.2. Connectedness). If $D \neq \mathbb{C}$, then let d be the shortest distance from the points on L to the boundary of D (such d exists by Theorem II.5.17 in my online Complex Analysis notes on II.5. Continuity). If $D=\mathbb{C}$, let $d=1$. Next, since L is of finite length, there are complex numbers on $L, z_{0}, z_{1}, \ldots, z_{n}$ such that $\left|z_{k}-z_{k-1}\right|<d$ for $k=1,2, \ldots, n$. Define neighborhood N_{k} of z_{k} as $N_{k}=\left\{z \in \mathbb{C}| | z-z_{k} \mid<d\right\}$. Then the N_{k} are all subsets of domain D, and the center of N_{k} lies in N_{k-1} for $k=1,2, \ldots, n$. See Figure 71.

Theorem 4.54.C (continued)

Proof (continued).

Since $\left|f\left(z_{0}\right)\right|$ is a maximum of $|f(z)|$ on D, then it is a maximum on N_{0} and $z_{0} \in N_{0}$, so by Lemma 4.54.A, f is constant on N_{0}. In particular, $f\left(z_{1}\right)=f\left(z_{0}\right)$. So $\left|f\left(z_{1}\right)\right|$ is a maximum of $|f(z)|$ on N_{1} and $z_{1} \in N_{1}$, so by Lemma 4.54.A, f is a constant on N_{1}. Inductively, f is constant on $N_{0} \cup N_{1} \cup \cdots \cup N_{n}$ and so $f\left(z_{0}\right)=f(P)$. Since P is an arbitrary point of D, then f is constant on D, a CONTRADICTION. So the assumption that $|f(z)|$ has a maximum on D is false, and $|f(z)|$ has no maximum on D, as claimed.

Theorem 4.54.C (continued)

Proof (continued).

Since $\left|f\left(z_{0}\right)\right|$ is a maximum of $|f(z)|$ on D, then it is a maximum on N_{0} and $z_{0} \in N_{0}$, so by Lemma 4.54.A, f is constant on N_{0}. In particular, $f\left(z_{1}\right)=f\left(z_{0}\right)$. So $\left|f\left(z_{1}\right)\right|$ is a maximum of $|f(z)|$ on N_{1} and $z_{1} \in N_{1}$, so by Lemma 4.54.A, f is a constant on N_{1}. Inductively, f is constant on $N_{0} \cup N_{1} \cup \cdots \cup N_{n}$ and so $f\left(z_{0}\right)=f(P)$. Since P is an arbitrary point of D, then f is constant on D, a CONTRADICTION. So the assumption that $|f(z)|$ has a maximum on D is false, and $|f(z)|$ has no maximum on D, as claimed.

Theorem 4.54.D

Theorem 4.54.D. Maximum Modulus Theorem, Alternative Version. Suppose that a function f is continuous on a closed bounded region R and that it is analytic and not constant in the interior of R. Then the maximum value of $|f(z)|$ on R, which is always reached (by Theorem 2.18.3) occurs somewhere on the boundary of R and never in the interior.

Proof. Let M be the maximum of $|f(z)|$ on R, so that $|f(z)| \leq M$ for all $z \in R$. If f is constant, then $|f(z)|=M$ for all $z \in R$ and so the maximum is attained on the boundary.

Theorem 4.54.D

Theorem 4.54.D. Maximum Modulus Theorem, Alternative Version. Suppose that a function f is continuous on a closed bounded region R and that it is analytic and not constant in the interior of R. Then the maximum value of $|f(z)|$ on R, which is always reached (by Theorem 2.18.3) occurs somewhere on the boundary of R and never in the interior.

Proof. Let M be the maximum of $|f(z)|$ on R, so that $|f(z)| \leq M$ for all $z \in R$. If f is constant, then $|f(z)|=M$ for all $z \in R$ and so the maximum is attained on the boundary. If f is not constant, then by the Maximum Modulus Theorem (Theorem 4.54.C) the maximum of $|f(z)|$ cannot be attained for some z_{0} in the interior of R. Since the maximum is attained somewhere on R by Theorem 2.18.3, then it must be attained on the boundary of R (recall that a "region" is an open connected set along with some, none, or all of its boundary points).

Theorem 4.54.D

Theorem 4.54.D. Maximum Modulus Theorem, Alternative Version. Suppose that a function f is continuous on a closed bounded region R and that it is analytic and not constant in the interior of R. Then the maximum value of $|f(z)|$ on R, which is always reached (by Theorem 2.18.3) occurs somewhere on the boundary of R and never in the interior.

Proof. Let M be the maximum of $|f(z)|$ on R, so that $|f(z)| \leq M$ for all $z \in R$. If f is constant, then $|f(z)|=M$ for all $z \in R$ and so the maximum is attained on the boundary. If f is not constant, then by the Maximum Modulus Theorem (Theorem 4.54.C) the maximum of $|f(z)|$ cannot be attained for some z_{0} in the interior of R. Since the maximum is attained somewhere on R by Theorem 2.18.3, then it must be attained on the boundary of R (recall that a "region" is an open connected set along with some, none, or all of its boundary points).

Theorem 4.54.E

Theorem 4.54.E. Let f be continuous on a closed bounded region R, and analytic and not constant on the interior of R. For $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$, function $u(x, y)$ attains its maximum value in R on the boundary of R and not in the interior.

Proof. Let $g(z)=e^{f(z)}$. Then g is continuous on R and analytic in the interior of R (by Theorem 2.18.1 and Lemma 2.24.B). Next,

$$
|g(z)|=\left|e^{f(z)}\right|=\left|e^{u(x, y)+i v(x, y)}\right|=\left|e^{u(x, y)}\right|\left|e^{j v(x, y)}\right|=e^{u(x, y)} .
$$

Theorem 4.54.E

Theorem 4.54.E. Let f be continuous on a closed bounded region R, and analytic and not constant on the interior of R. For $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$, function $u(x, y)$ attains its maximum value in R on the boundary of R and not in the interior.

Proof. Let $g(z)=e^{f(z)}$. Then g is continuous on R and analytic in the interior of R (by Theorem 2.18.1 and Lemma 2.24.B). Next,

$$
|g(z)|=\left|e^{f(z)}\right|=\left|e^{u(x, y)+i v(x, y)}\right|=\left|e^{u(x, y)}\right|\left|e^{i v(x, y)}\right|=e^{u(x, y)}
$$

So by Corollary 4.54.D, $|g(z)|=e^{u(x, y)}$ attains the maximum on the boundary of R. Since e^{x} is an increasing function of real variable x, then $u(x, y)$ attains its maximum at the same point on the boundary of R. Since f is not a constant then the maximum $u(x, y)$ (and hence $|g(z)|)$ cannot occur at an interior point also by Corollary 4.54.D.

Theorem 4.54.E

Theorem 4.54.E. Let f be continuous on a closed bounded region R, and analytic and not constant on the interior of R. For $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$, function $u(x, y)$ attains its maximum value in R on the boundary of R and not in the interior.

Proof. Let $g(z)=e^{f(z)}$. Then g is continuous on R and analytic in the interior of R (by Theorem 2.18.1 and Lemma 2.24.B). Next,

$$
|g(z)|=\left|e^{f(z)}\right|=\left|e^{u(x, y)+i v(x, y)}\right|=\left|e^{u(x, y)}\right|\left|e^{i v(x, y)}\right|=e^{u(x, y)}
$$

So by Corollary 4.54.D, $|g(z)|=e^{u(x, y)}$ attains the maximum on the boundary of R. Since e^{x} is an increasing function of real variable x, then $u(x, y)$ attains its maximum at the same point on the boundary of R. Since f is not a constant then the maximum $u(x, y)$ (and hence $|g(z)|$) cannot occur at an interior point also by Corollary 4.54.D.

