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Lemma 4.54.A

Lemma 4.54.A

Lemma 4.54.A. Suppose that |f (z)| ≤ |f (z0)| at each point z in some
neighborhood |z − z0| < ε in which f is analytic. Then f (z) has the
constant value f (z0) throughout that neighborhood.

Proof. Let z1 6= z0 be in the ε-neighborhood of z0. Let ρ = |z1 − z0|. Let
Cρ be the positively oriented circle |z − z0| = ρ. Then f is analytic on and
inside Cρ and so by the Cauchy Integral Formula (Theorem 4.50.A),

f (z0) =
1

2πi

∫
Cρ

f (z) dz

z − z0
.

Parameterize Cρ as z = z0 + ρe iθ, θ ∈ [0, 2π].

Then

f (z0) =
1

2πi

∫ 2π

0

f (z0 + ρe iθ)

(z0 + ρe iθ)− z0
iρe iθ dθ =

1

2π

∫ 2π

0
f (z0 + ρe iθ) dθ. (2)

We then have from (2) that

|f (z0)| ≤
1

2π

∫ 2π

0
|f (z0 + ρe iθ)| dθ by Lemma 4.43.A. (3)

() Complex Variables April 26, 2020 3 / 8



Lemma 4.54.A

Lemma 4.54.A

Lemma 4.54.A. Suppose that |f (z)| ≤ |f (z0)| at each point z in some
neighborhood |z − z0| < ε in which f is analytic. Then f (z) has the
constant value f (z0) throughout that neighborhood.

Proof. Let z1 6= z0 be in the ε-neighborhood of z0. Let ρ = |z1 − z0|. Let
Cρ be the positively oriented circle |z − z0| = ρ. Then f is analytic on and
inside Cρ and so by the Cauchy Integral Formula (Theorem 4.50.A),

f (z0) =
1

2πi

∫
Cρ

f (z) dz

z − z0
. Parameterize Cρ as z = z0 + ρe iθ, θ ∈ [0, 2π].

Then

f (z0) =
1

2πi

∫ 2π

0

f (z0 + ρe iθ)

(z0 + ρe iθ)− z0
iρe iθ dθ =

1

2π

∫ 2π

0
f (z0 + ρe iθ) dθ. (2)

We then have from (2) that

|f (z0)| ≤
1

2π

∫ 2π

0
|f (z0 + ρe iθ)| dθ by Lemma 4.43.A. (3)

() Complex Variables April 26, 2020 3 / 8



Lemma 4.54.A

Lemma 4.54.A

Lemma 4.54.A. Suppose that |f (z)| ≤ |f (z0)| at each point z in some
neighborhood |z − z0| < ε in which f is analytic. Then f (z) has the
constant value f (z0) throughout that neighborhood.

Proof. Let z1 6= z0 be in the ε-neighborhood of z0. Let ρ = |z1 − z0|. Let
Cρ be the positively oriented circle |z − z0| = ρ. Then f is analytic on and
inside Cρ and so by the Cauchy Integral Formula (Theorem 4.50.A),

f (z0) =
1

2πi

∫
Cρ

f (z) dz

z − z0
. Parameterize Cρ as z = z0 + ρe iθ, θ ∈ [0, 2π].

Then

f (z0) =
1

2πi

∫ 2π

0

f (z0 + ρe iθ)

(z0 + ρe iθ)− z0
iρe iθ dθ =

1

2π

∫ 2π

0
f (z0 + ρe iθ) dθ. (2)

We then have from (2) that

|f (z0)| ≤
1

2π

∫ 2π

0
|f (z0 + ρe iθ)| dθ by Lemma 4.43.A. (3)

() Complex Variables April 26, 2020 3 / 8



Lemma 4.54.A

Lemma 4.51.A (continued)

Proof (continued). On the other hand, by hypothesis,
|f (z0 + ρe iθ)| ≤ |f (z0)| for θ ∈ [0, 2π] so that∫ 2π
0 |f (z0 + ρe iθ)| dθ ≤

∫ 2π
0 |f (z0)| dθ = 2π|f (z0)|, or

|f (z0)| ≥ 1
2π

∫ 2π
0 |f (z0 + ρe iθ)| dθ. (5)

Combining equations (3) and (5) gives |f (z0)| = 1
2π

∫ 2π
0 |f (z0 + ρe iθ)| dθ,

or
∫ 2π
0 (|f (z0)| − |f (z0 + ρe iθ)|) dθ = 0. Now the integrand is nonnegative

by hypothesis and is a continuous function of θ on [0, 2π]. If the integral
of a continuous real-valued nonnegative function over some interval is 0
then the function must be identically 0 (yes, we could use a reference for
this). So |f (z0)| = |f (z0 + ρe iθ)| for all θ ∈ [0, 2π]. That is,
|f (z0)| = |f (z)| for all z ∈ Cρ. In particular, |f (z0)| = |f (z1)|. Since z1 is
an arbitrary point in the ε-neighborhood of z0, then |f (z0)| = |f (z)| for all
z such that |z − z0| < ε. So by Example 2.25.4/Theorem 2.25.B,
f (z) = f (z0) for all z satisfying |z − z0| < ε, as claimed.
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Lemma 4.54.A

Lemma 4.51.A (continued)
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Corollary 4.54.C. The Maximum Modulus Theorem

Theorem 4.54.C

Theorem 4.54.C. The Maximum Modulus Theorem.
If a function f is analytic and not constant in a given domain D, then
|f (z)| has no maximum value in D. That is, there is no point z0 ∈ D such
that |f (z)| ≤ |f (z0)| for all points z ∈ D.
Proof. Let f be analytic and nonconstant on D. ASSUME |f (z)| has a
maximum on D of |f (z0)| for some z0 ∈ D.

Let P be any point in D. Let
L be a polygonal line lying in D and joining z0 and P (such a polygonal
line exists since D is open and connected by Theorem II.2.3 in my online
notes for Complex Analysis 1 [MATH 5510] on II.2. Connectedness). If
D 6= C, then let d be the shortest distance from the points on L to the
boundary of D (such d exists by Theorem II.5.17 in my online Complex
Analysis notes on II.5. Continuity). If D = C, let d = 1. Next, since L is
of finite length, there are complex numbers on L, z0, z1, . . . , zn such that
|zk − zk−1| < d for k = 1, 2, . . . , n. Define neighborhood Nk of zk as
Nk = {z ∈ C | |z − zk | < d}. Then the Nk are all subsets of domain D,
and the center of Nk lies in Nk−1 for k = 1, 2, . . . , n. See Figure 71.
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Corollary 4.54.C. The Maximum Modulus Theorem

Theorem 4.54.C (continued)

Proof (continued).

Since |f (z0)| is a maximum of |f (z)| on D, then it is a maximum on N0

and z0 ∈ N0, so by Lemma 4.54.A, f is constant on N0. In particular,
f (z1) = f (z0). So |f (z1)| is a maximum of |f (z)| on N1 and z1 ∈ N1, so
by Lemma 4.54.A, f is a constant on N1. Inductively, f is constant on
N0 ∪ N1 ∪ · · · ∪ Nn and so f (z0) = f (P). Since P is an arbitrary point of
D, then f is constant on D, a CONTRADICTION. So the assumption that
|f (z)| has a maximum on D is false, and |f (z)| has no maximum on D, as
claimed.
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Proof (continued).
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Theorem 4.54.D. Maximum Modulus Theorem, Alternative
Version

Theorem 4.54.D

Theorem 4.54.D. Maximum Modulus Theorem, Alternative Version.
Suppose that a function f is continuous on a closed bounded region R and
that it is analytic and not constant in the interior of R. Then the
maximum value of |f (z)| on R, which is always reached (by Theorem
2.18.3) occurs somewhere on the boundary of R and never in the interior.

Proof. Let M be the maximum of |f (z)| on R, so that |f (z)| ≤ M for all
z ∈ R. If f is constant, then |f (z)| = M for all z ∈ R and so the
maximum is attained on the boundary.

If f is not constant, then by the
Maximum Modulus Theorem (Theorem 4.54.C) the maximum of |f (z)|
cannot be attained for some z0 in the interior of R. Since the maximum is
attained somewhere on R by Theorem 2.18.3, then it must be attained on
the boundary of R (recall that a “region” is an open connected set along
with some, none, or all of its boundary points).
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Theorem 4.54.E

Theorem 4.54.E

Theorem 4.54.E. Let f be continuous on a closed bounded region R, and
analytic and not constant on the interior of R. For
f (z) = u(x , y) + iv(x , y), where z = x + iy , function u(x , y) attains its
maximum value in R on the boundary of R and not in the interior.

Proof. Let g(z) = ef (z). Then g is continuous on R and analytic in the
interior of R (by Theorem 2.18.1 and Lemma 2.24.B). Next,

|g(z)| = |ef (z)| = |eu(x ,y)+iv(x ,y)| = |eu(x ,y)||e iv(x ,y)| = eu(x ,y).

So by Corollary 4.54.D, |g(z)| = eu(x ,y) attains the maximum on the
boundary of R. Since ex is an increasing function of real variable x , then
u(x , y) attains its maximum at the same point on the boundary of R.
Since f is not a constant then the maximum u(x , y) (and hence |g(z)|)
cannot occur at an interior point also by Corollary 4.54.D.
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