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Corollary 5.56.1

Corollary 5.56.1. Test for Divergence
If a series of complex numbers converges, then the nth term converges to
zero as n tends to infinity. That is, if z, does not converge to 0 then

0 .
> 02 zp diverges.

Proof. Let 230:1 z, converge. With z, = x, + iy,, Theorem 5.56.A
implies that 7, x, and >~ y, both converge. By the Test for
Divergence from Calculus 2 (see Theorem 7 of my online notes on 10.2.
Infinite Series), we have that x, converges to 0 and y, converges to 0. So
by Theorem 5.55.A,

lim z, = I|m Xp+ 1 I|m Ya=0+i0=0.

n—oo
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Theorem 5.56.A

Theorem 5.56.A

Theorem 5.56.A. Suppose that z, = x, + iy, and S = X 4+ /Y. Then
Yoizp=>Sifandonlyif "2 x, =X and Y 2y, =Y.

Proof. Let Xy = >N | x, and Yy = N | y,. Then

N N N
SN—ZZ,,—Z Xotiyn) =Y XnHiY Yn=Xn+iYn.
n=1 n=1 n=1

So > >, z, =S if and only if lim,_.oc Sy = S; that is, if and only if
limp—oo(Xn +1Ys) = S. Now by Theorem 5.55.A,

limp—oo(Xn 4+ 1Yn) = limp_oo Xo +ilimpoo Yo = X +iY. So

> 21 zn =S if and only if S = X 4 Y, as claimed. a
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Corollary 5.56.2

Corollary 5.56.2

Corollary 5.56.2. The absolute convergence of a series of complex
numbers implies the convergence of that series.

Proof. Suppose series Zz,, converges absolutely. With z, = x, + iy,, we

n=0
have [xal = v/32 < /X2 +¥2 = |zl and Iyal = \/¥2 < /2 + 2 = |zal.
So by the Direct Comparison Test for series of real numbers from Calculus
2 (see Theorem 10. The (Direct) Companson Test in my online notes on

10.4. Comparison Tests), we see that both Z |xn| and Z |yn| converge.
n=0 n=0
o0

o0
So both the series of real numbers Zx,, and Zy,, converge absolutely.
n=0 n=0
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Corollary 5.56.2 (continued)

Corollary 5.56.2. The absolute convergence of a series of complex
numbers implies the convergence of that series.

Proof (continued. Since the absolute convergence of a series of real

numbers implies its convergence (see Theorem 16. The Absolute

Convergence Theorem in my online Calculus 2 notes on 10.6. Alternating
o0

Series, Absolute and Conditional Convergence), then the series Zx,, and

% "

Zy,, both converge. Therefore, by Theorem 5.56.A, the series Zz,,

n=0 n=0
converges. L]
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