Complex Variables

Chapter 5. Series

Section 5.58. Proof of Taylor's Theorem—Proofs of Theorems

Table of contents

(1) Theorem 5.57.A. Taylor's Theorem

Theorem 5.57.A

Theorem 5.57.A. Taylor's Theorem. Suppose that a function f is analytic throughout a disk $\left|z-z_{0}\right|<R_{0}$ (that is, $f^{\prime}(z)$ is defined for each $\left.\left|z-z_{0}\right|<R_{0}\right)$, centered at z_{0} and with radius R_{0}. Then $f(z)$ has the power series representation $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for $\left|z-z_{0}\right|<R_{0}$ where $a_{n}=f^{(n)}\left(z_{0}\right) / n!$ for $n=0,1,2, \ldots$. That is, the series converges to $f(z)$ for each z in the stated disk.

Proof. Let $z_{0}=0,|z|=r$ and let C_{0} denote
the positively oriented circle $|z|=r_{0}$
where $r<r_{0}<R_{0}$. Since f is
analytic inside and on C_{0} by
hypothesis and since the point
z is interior to C_{0}, then by the
Cauchy Integral Formula (Theorem 4.50.A),

Theorem 5.57.A

Theorem 5.57.A. Taylor's Theorem. Suppose that a function f is analytic throughout a disk $\left|z-z_{0}\right|<R_{0}$ (that is, $f^{\prime}(z)$ is defined for each $\left.\left|z-z_{0}\right|<R_{0}\right)$, centered at z_{0} and with radius R_{0}. Then $f(z)$ has the power series representation $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for $\left|z-z_{0}\right|<R_{0}$ where $a_{n}=f^{(n)}\left(z_{0}\right) / n!$ for $n=0,1,2, \ldots$. That is, the series converges to $f(z)$ for each z in the stated disk.

Proof. Let $z_{0}=0,|z|=r$ and let C_{0} denote the positively oriented circle $|z|=r_{0}$ where $r<r_{0}<R_{0}$. Since f is analytic inside and on C_{0} by hypothesis and since the point z is interior to C_{0}, then by the Cauchy Integral Formula (Theorem 4.50.A),

FIGURE 75

Theorem 5.57.A

Theorem 5.57.A. Taylor's Theorem. Suppose that a function f is analytic throughout a disk $\left|z-z_{0}\right|<R_{0}$ (that is, $f^{\prime}(z)$ is defined for each $\left.\left|z-z_{0}\right|<R_{0}\right)$, centered at z_{0} and with radius R_{0}. Then $f(z)$ has the power series representation $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for $\left|z-z_{0}\right|<R_{0}$ where $a_{n}=f^{(n)}\left(z_{0}\right) / n!$ for $n=0,1,2, \ldots$. That is, the series converges to $f(z)$ for each z in the stated disk.

Proof. Let $z_{0}=0,|z|=r$ and let C_{0} denote the positively oriented circle $|z|=r_{0}$ where $r<r_{0}<R_{0}$. Since f is analytic inside and on C_{0} by hypothesis and since the point z is interior to C_{0}, then by the Cauchy Integral Formula (Theorem 4.50.A),

FIGURE 75

Theorem 5.57.A (continued 1)

Proof (continued).

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{C_{0}} \frac{f(s) d s}{s-z} \tag{1}
\end{equation*}
$$

Notice that $\frac{1}{s-z}=\frac{1}{s} \frac{1}{1-z / s}$, and as seen in the last example of Section
56, $\frac{1}{1-z}=\sum_{n=0}^{N-1} z^{n}+\frac{z^{N}}{1-z}$ for any $z \neq 1$. So we have

$$
\frac{1}{s-z}=\sum_{n=0}^{N-1} \frac{1}{s^{n+1}} z^{n}+z^{N} \frac{1}{(s-z) s^{N}}
$$

Multiplying both sides by $f(s)$ and then integrating each side with respect to s around C_{0} gives,

$$
\int_{C_{0}} \frac{f(s) d s}{s-z}=\sum_{n=0}^{N-1}\left(\int_{C_{0}} \frac{f(s) d s}{s^{n+1}}\right) z^{n}+z^{N} \int_{C_{0}} \frac{f(s) d s}{(s-z) S^{N}}
$$

Theorem 5.57.A (continued 1)

Proof (continued).

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{C_{0}} \frac{f(s) d s}{s-z} \tag{1}
\end{equation*}
$$

Notice that $\frac{1}{s-z}=\frac{1}{s} \frac{1}{1-z / s}$, and as seen in the last example of Section 56, $\frac{1}{1-z}=\sum_{n=0}^{N-1} z^{n}+\frac{z^{N}}{1-z}$ for any $z \neq 1$. So we have

$$
\frac{1}{s-z}=\sum_{n=0}^{N-1} \frac{1}{s^{n+1}} z^{n}+z^{N} \frac{1}{(s-z) s^{N}}
$$

Multiplying both sides by $f(s)$ and then integrating each side with respect to s around C_{0} gives,

$$
\begin{equation*}
\int_{C_{0}} \frac{f(s) d s}{s-z}=\sum_{n=0}^{N-1}\left(\int_{C_{0}} \frac{f(s) d s}{s^{n+1}}\right) z^{n}+z^{N} \int_{C_{0}} \frac{f(s) d s}{(s-z) S^{N}} \tag{*}
\end{equation*}
$$

Theorem 5.57.A (continued 2)

Proof (continued). By the Extended Cauchy Formula (Theorem 4.51.A) (with $z_{0}=0$), $f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{c_{0}} \frac{f(s) d s}{s^{n+1}}=f^{(n)}(0)$ for $n=0,1,2, \ldots$ So from (*) we get

$$
\frac{1}{2 \pi i} \int_{C_{0}} \frac{f(s) d s}{s-z}=\frac{1}{2 \pi i} \sum_{n=0}^{N-1}\left(\int_{C_{0}} \frac{f(s) d s}{s^{n+1}}\right) z^{n}+\frac{z^{N}}{2 \pi i} \int_{C_{0}} \frac{f(s) d s}{(s-z) S^{N}},
$$

and so from (1) and the Extended Cauchy Formula,

$$
\begin{equation*}
f(z)=\sum_{n=0}^{N-1} \frac{f^{(n)}(0)}{n!} z^{n}+\rho_{N}(z) \tag{5}
\end{equation*}
$$

where $\rho_{N}(z)=\frac{z^{N}}{2 \pi i} \int_{C_{0}} \frac{f(s) d s}{(s-z) z^{N}}$.

Theorem 5.57.A (continued 2)

Proof (continued). By the Extended Cauchy Formula (Theorem 4.51.A) (with $z_{0}=0$), $f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{c_{0}} \frac{f(s) d s}{s^{n+1}}=f^{(n)}(0)$ for $n=0,1,2, \ldots$. So from (*) we get

$$
\frac{1}{2 \pi i} \int_{C_{0}} \frac{f(s) d s}{s-z}=\frac{1}{2 \pi i} \sum_{n=0}^{N-1}\left(\int_{C_{0}} \frac{f(s) d s}{s^{n+1}}\right) z^{n}+\frac{z^{N}}{2 \pi i} \int_{C_{0}} \frac{f(s) d s}{(s-z) S^{N}}
$$

and so from (1) and the Extended Cauchy Formula,

$$
\begin{equation*}
f(z)=\sum_{n=0}^{N-1} \frac{f^{(n)}(0)}{n!} z^{n}+\rho_{N}(z) \tag{5}
\end{equation*}
$$

where $\rho_{N}(z)=\frac{z^{N}}{2 \pi i} \int_{C_{0}} \frac{f(s) d s}{(s-z) z^{N}}$.

Theorem 5.57.A (continued 3)

Proof (continued). Now we have $|z|=r$ and C_{0} has radius r_{0} where $r_{0}>r$. So for s on C_{0} we have by Corollary 1.4.1 that $|s-z| \geq||s|-|z||=r_{0}-r$. With $M=\max _{s \in C_{0}}|f(s)|$, we now have

$$
\left|\rho_{N}(z)\right| \leq \frac{r^{N}}{2 \pi} \frac{M}{\left(r_{0}-r\right) r_{0}^{N}} 2 \pi r_{0}=\frac{M r_{0}}{r_{0}-r}\left(\frac{r}{r_{0}}\right)^{N}
$$

Since $r / r_{0}<1$, then $\lim _{N \rightarrow \infty}\left(r / r_{0}\right)^{N}=0$, and so from (5),

$$
f(z)=\lim _{N \rightarrow \infty}\left(\sum_{n=0}^{N-1} \frac{f^{(n)}(0)}{n!} z^{n}\right)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}
$$

So the result holds for $z_{0}=0$.

Theorem 5.57.A (continued 3)

Proof (continued). Now we have $|z|=r$ and C_{0} has radius r_{0} where $r_{0}>r$. So for s on C_{0} we have by Corollary 1.4.1 that
$|s-z| \geq||s|-|z||=r_{0}-r$. With $M=\max _{s \in C_{0}}|f(s)|$, we now have

$$
\left|\rho_{N}(z)\right| \leq \frac{r^{N}}{2 \pi} \frac{M}{\left(r_{0}-r\right) r_{0}^{N}} 2 \pi r_{0}=\frac{M r_{0}}{r_{0}-r}\left(\frac{r}{r_{0}}\right)^{N}
$$

Since $r / r_{0}<1$, then $\lim _{N \rightarrow \infty}\left(r / r_{0}\right)^{N}=0$, and so from (5),

$$
f(z)=\lim _{N \rightarrow \infty}\left(\sum_{n=0}^{N-1} \frac{f^{(n)}(0)}{n!} z^{n}\right)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}
$$

So the result holds for $z_{0}=0$.

Theorem 5.57.A (continued 4)

Theorem 5.57.A. Taylor's Theorem. Suppose that a function f is analytic throughout a disk $\left|z-z_{0}\right|<R_{0}$ (that is, $f^{\prime}(z)$ is defined for each $\left.\left|z-z_{0}\right|<R_{0}\right)$, centered at z_{0} and with radius R_{0}. Then $f(z)$ has the power series representation $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for $\left|z-z_{0}\right|<R_{0}$ where $a_{n}=f^{(n)}\left(z_{0}\right) / n!$ for $n=0,1,2, \ldots$.
Proof (continued). Now suppose that f is analytic on $\left|z-z_{0}\right|<R_{0}$ and let $g(z)=f\left(z+z_{0}\right)$. Then g is analytic on $|z|<R_{0}$ and by the above argument, $g(z)=\sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} z^{n}$ for $|z|<R_{0}$. That is,
$f\left(z+z_{0}\right)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!} z^{n}$ for $|z|<R_{0}$, and replacing z with $z-z_{0}$,
$f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ for $\left|z-z_{0}\right|<R_{0}$, as claimed.

