Complex Variables

Chapter 5. Series

Section 5.63. Absolute and Uniform Convergence of Power Series—Proofs of Theorems

Table of contents

(1) Theorem 5.63.1
(2) Theorem 5.63.2

Theorem 5.63.1

Theorem 5.63.1. If a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges when $z=z_{1}$ (where $z_{1} \neq z_{0}$), then the power series is absolutely convergent at each point z in the disk $\left|z-z_{0}\right|<R_{1}$ where $R_{1}=\left|z_{1}-z_{0}\right|$ (see Figure 79).

FIGURE 79

Proof. Suppose $\sum a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges for some $z_{1} \neq z_{0}$. By Corollary 5.56. A, the series is bounded so there is some positive $M \in \mathbb{R}$ such that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right| \leq M$ for $n \in \mathbb{N} \cup\{0\}$. For $z \in \mathbb{C}$ with $\left|z-z_{0}\right|<R_{1}$, let $\rho=\left|z-z_{0}\right| /\left|z_{1}-z_{0}\right|$ so that $\rho<1$.

Theorem 5.63.1

Theorem 5.63.1. If a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges when $z=z_{1}$ (where $z_{1} \neq z_{0}$), then the power series is absolutely convergent at each point z in the disk $\left|z-z_{0}\right|<R_{1}$ where $R_{1}=\left|z_{1}-z_{0}\right|$ (see Figure 79).

FIGURE 79

Proof. Suppose $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges for some $z_{1} \neq z_{0}$. By Corollary 5.56. A, the series is bounded so there is some positive $M \in \mathbb{R}$ such that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right| \leq M$ for $n \in \mathbb{N} \cup\{0\}$. For $z \in \mathbb{C}$ with $\left|z-z_{0}\right|<R_{1}$, let $\rho=\left|z-z_{0}\right| /\left|z_{1}-z_{0}\right|$ so that $\rho<1$.

Theorem 5.63.1

Proof (continued). Then

$$
\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right| \frac{\left|z-z_{0}\right|^{n}}{\left|z_{1}-z_{0}\right|^{n}} \leq M \rho^{n} \text { for } n \in \mathbb{N} \cup\{0\} .
$$

Now $\sum_{n=0}^{\infty} M \rho^{n}$ is a geometric series (of real numbers) with ratio $\rho<1$ and so it converges (to $M /(1-\rho)$). So by the Direct Comparison Test (see my online Calculus 2 notes on 10.4, Comparison Tests) we know that the series of real numbers $\sum_{n=0}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|$ converges. That is, $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges absolutely for all z satisfying $\left|z-z_{0}\right|<R_{1}$, as claimed.

Theorem 5.63.1

Proof (continued). Then

$$
\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right| \frac{\left|z-z_{0}\right|^{n}}{\left|z_{1}-z_{0}\right|^{n}} \leq M \rho^{n} \text { for } n \in \mathbb{N} \cup\{0\} .
$$

Now $\sum_{n=0}^{\infty} M \rho^{n}$ is a geometric series (of real numbers) with ratio $\rho<1$ and so it converges (to $M /(1-\rho)$). So by the Direct Comparison Test (see my online Calculus 2 notes on 10.4, Comparison Tests) we know that the series of real numbers $\sum_{n=0}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|$ converges. That is, $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges absolutely for all z satisfying $\left|z-z_{0}\right|<R_{1}$, as claimed.

Theorem 5.63.2

Theorem 5.63.2. If z_{1} is a point inside the circle of convergence $\left|z-z_{0}\right|=R$ of a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, then the series is uniformly convergent in every closed disk $\left|z-z_{0}\right|<R_{1}$ where $0 \leq R_{1}<R$.

Proof. Given a point z_{1} on the circle $\left|z-z_{0}\right|=R_{1}$, there are points inside the circle of convergence which are farther from z_{0} than z_{1} is, for which the series converges (see Figure 80).

Theorem 5.63.2

Theorem 5.63.2. If z_{1} is a point inside the circle of convergence $\left|z-z_{0}\right|=R$ of a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, then the series is uniformly convergent in every closed disk $\left|z-z_{0}\right|<R_{1}$ where $0 \leq R_{1}<R$.

Proof. Given a point z_{1} on the circle $\left|z-z_{0}\right|=R_{1}$, there are points inside the circle of convergence which are farther from z_{0} than z_{1} is, for which the series converges (see Figure 80).

FIGURE 80

So by Theorem 5.63.1, the series $\sum_{n=0}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges.

Theorem 5.63.2

Theorem 5.63.2. If z_{1} is a point inside the circle of convergence $\left|z-z_{0}\right|=R$ of a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, then the series is uniformly convergent in every closed disk $\left|z-z_{0}\right|<R_{1}$ where $0 \leq R_{1}<R$.

Proof. Given a point z_{1} on the circle $\left|z-z_{0}\right|=R_{1}$, there are points inside the circle of convergence which are farther from z_{0} than z_{1} is, for which the series converges (see Figure 80).

FIGURE 80
So by Theorem 5.63.1, the series $\sum_{n=0}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges.

Theorem 5.63.2 (continued 1)

Proof (continued). Let $m, N \in \mathbb{N}$ where $m>N$. Then the convergence of the power series implies

$$
\rho_{N}(z)=S(z)-S_{N}(z)=\sum_{n=N}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\lim _{m \rightarrow \infty} \sum_{n=N}^{m} a_{n}\left(z-z_{0}\right)^{n}
$$

and the absolute convergence of the power series at $z=z_{1}$ lets us define the real number

$$
\sigma_{N}=\sum_{n=0}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|=\lim _{m \rightarrow \infty} \sum_{n=0}^{m}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right| .
$$

By Exercise 5.56.3,

$$
\left|\rho_{N}(z)\right|=\left|\lim _{m \rightarrow \infty} \sum_{n=N}^{m} a_{n}\left(z-z_{0}\right)^{n}\right|=\lim _{m \rightarrow \infty}\left|\sum_{n=N}^{m} a_{n}\left(z-z_{0}\right)^{n}\right|, \ldots
$$

Theorem 5.63.2 (continued 2)

Proof (continued). ... and when $\left|z-z_{0}\right| \leq\left|z_{1}-z_{0}\right|$ we have

$$
\begin{aligned}
\left|\sum_{n=N}^{m} a_{n}\left(z-z_{0}\right)^{n}\right| & \leq \sum_{n=N}^{m}\left|a_{n}\right|\left|z-z_{0}\right|^{n} \text { by the Triangle Inequality } \\
& \leq \sum_{n=N}^{\infty}\left|a_{n}\right|\left|z_{1}-z_{0}\right|^{n} \text { since }\left|z-z_{0}\right| \leq\left|z_{1}-z_{0}\right| \\
& =\sum_{n=N}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|
\end{aligned}
$$

Consequently, when $\left|z-z_{0}\right| \leq R_{1}$ we have

$$
\left|\rho_{N}(z)\right|=\lim _{m \rightarrow \infty}\left|\sum_{n=N}^{m} a_{n}\left(z-z_{0}\right)^{n}\right| \leq \lim _{m \rightarrow \infty} \sum_{n=N}^{m}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|=\sigma_{N}
$$

Theorem 5.63.2 (continued 2)

Proof (continued). ... and when $\left|z-z_{0}\right| \leq\left|z_{1}-z_{0}\right|$ we have

$$
\begin{aligned}
\left|\sum_{n=N}^{m} a_{n}\left(z-z_{0}\right)^{n}\right| & \leq \sum_{n=N}^{m}\left|a_{n}\right|\left|z-z_{0}\right|^{n} \text { by the Triangle Inequality } \\
& \leq \sum_{n=N}^{\infty}\left|a_{n}\right|\left|z_{1}-z_{0}\right|^{n} \text { since }\left|z-z_{0}\right| \leq\left|z_{1}-z_{0}\right| \\
& =\sum_{n=N}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|
\end{aligned}
$$

Consequently, when $\left|z-z_{0}\right| \leq R_{1}$ we have

$$
\left|\rho_{N}(z)\right|=\lim _{m \rightarrow \infty}\left|\sum_{n=N}^{m} a_{n}\left(z-z_{0}\right)^{n}\right| \leq \lim _{m \rightarrow \infty} \sum_{n=N}^{m}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|=\sigma_{N}
$$

Theorem 5.63.2 (continued 3)

Theorem 5.63.2. If z_{1} is a point inside the circle of convergence $\left|z-z_{0}\right|=R$ of a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, then the series is uniformly convergent in every closed disk $\left|z-z_{0}\right|<R_{1}$ where $0 \leq R_{1}<R$.

Proof (continued). Since the σ_{N} are the remainder of the convergent series $\sum_{n=0}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$, then they tend to zero as N tends to infinity (by Note 5.56.A). That is, for each $\varepsilon>0$ there is $N_{\varepsilon} \in \mathbb{N}$ such that $\left|\rho_{N}(z)\right|<\sigma_{N}<\varepsilon$ whenever $N>N_{\varepsilon}$. This holds for any z in the disk $\left|z-z_{0}\right| \leq R_{1}$ and, therefore, the series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges uniformly on the closed disk $\left|z-z_{0}\right| \leq R_{1}$, as claimed.

Theorem 5.63.2 (continued 3)

Theorem 5.63.2. If z_{1} is a point inside the circle of convergence $\left|z-z_{0}\right|=R$ of a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, then the series is uniformly convergent in every closed disk $\left|z-z_{0}\right|<R_{1}$ where $0 \leq R_{1}<R$.

Proof (continued). Since the σ_{N} are the remainder of the convergent series $\sum_{n=0}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$, then they tend to zero as N tends to infinity (by Note 5.56.A). That is, for each $\varepsilon>0$ there is $N_{\varepsilon} \in \mathbb{N}$ such that $\left|\rho_{N}(z)\right|<\sigma_{N}<\varepsilon$ whenever $N>N_{\varepsilon}$. This holds for any z in the disk $\left|z-z_{0}\right| \leq R_{1}$ and, therefore, the series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges uniformly on the closed disk $\left|z-z_{0}\right| \leq R_{1}$, as claimed.

