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Chapter 5. Series
Section 5.64. Continuity of Sums of Power Series—Proofs of Theorems
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Theorem 5.64.1

Theorem 5.64.1

Theorem 5.64.1. A power series
∞∑

n=0

an(z − z0)
n represents a continuous

function S(z) at each point inside its circle of convergence |z − z0| = R.

Proof. Let SN(z) =
∑N−1

n=0 an(z − z0)
n and consider the remainder

function ρN(z) = S(z)− SN(z) for |z − z0| < R. Then, because
S(z) = SN(z) + ρN(z) for |z − z0| < R, we have

|S(z)− S(z1)| = |(SN(z) + ρN(z))− (SN(z1) + ρN(z1))|

≤ |SN(z)− SN(z1)|+ |ρn(z)|+ |ρN(z1)| by the Triangle Inequality. (∗)

Let ε > 0. If z is any point in some closed disk |z − z0| ≤ R0 where
|z1 − z0| < R0 < R1, then by the uniform convergence of the power series
on set |z − z0| ≤ R0 as given by Theorem 5.63.2, there is Nε ∈ N such that

|ρN(z)| < ε

3
whenever N > Nε. (∗∗)
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Theorem 5.64.1

Theorem 5.64.1 (continued 1)

Proof (continued). In particular, this inequality holds for each point z in
some neighborhood |z − z1| < δ1 of z1 that is small enough to be
contained in the disk |z − z1| ≤ R0 (see Figure 81).

Now the partial sum SN(z) is a polynomial and so is continuous for each
value of N at z = z1 by Corollary 2.18.B. When N = Nε + 1, by the
definitions of continuity and limit, we can choose δ2 > 0 such that

|SN(z)− SN(z1)| <
ε

3
whenever |z − z1| < δ2. (∗ ∗ ∗)
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Theorem 5.64.1

Theorem 5.64.1 (continued 2)

Proof (continued). So with N = Nε + 1, δ = min{δ1, δ2}, and with
|z − z1| < δ2 we have

|S(z)− S(z1)| ≤ |SN(z)− SN(z1)|+ |ρN(z)|+ |ρN(z1)| by (∗)

<
ε

3
+ |ρN(z) + |ρN(z1)| by (∗ ∗ ∗)

<
ε

3
+

ε

3
+ |ρN(z1)| by (∗∗)

<
ε

3
+

ε

3
+

ε

3
with z = z1 in (∗∗)

= ε.

Therefore S(z) =
∑∞

n=0 an(z − z0)
n is continuous at z1 and, since z1 is an

arbitrary point inside the circle of convergence, S(z) is continuous inside
the circle of convergence, as claimed.
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