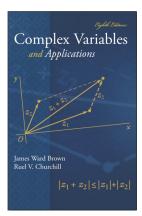
### **Complex Variables**

Chapter 5. Series

Section 5.64. Continuity of Sums of Power Series—Proofs of Theorems



## Table of contents



### Theorem 5.64.1

**Theorem 5.64.1.** A power series  $\sum_{n=0}^{n} a_n(z-z_0)^n$  represents a continuous function S(z) at each point inside its circle of convergence  $|z-z_0| = R$ .

**Proof.** Let  $S_N(z) = \sum_{n=0}^{N-1} a_n(z-z_0)^n$  and consider the remainder function  $\rho_N(z) = S(z) - S_N(z)$  for  $|z - z_0| < R$ . Then, because  $S(z) = S_N(z) + \rho_N(z)$  for  $|z - z_0| < R$ , we have

 $|S(z) - S(z_1)| = |(S_N(z) + \rho_N(z)) - (S_N(z_1) + \rho_N(z_1))|$ 

 $\leq |S_N(z)-S_N(z_1)|+|
ho_n(z)|+|
ho_N(z_1)|$  by the Triangle Inequality. (\*)

### Theorem 5.64.1

**Theorem 5.64.1.** A power series  $\sum_{n=0}^{n} a_n(z-z_0)^n$  represents a continuous function S(z) at each point inside its circle of convergence  $|z-z_0| = R$ . **Proof** Let  $S_n(z) = \sum_{n=0}^{N-1} a_n(z-z_n)^n$  and consider the remainder

**Proof.** Let  $S_N(z) = \sum_{n=0}^{N-1} a_n(z-z_0)^n$  and consider the remainder function  $\rho_N(z) = S(z) - S_N(z)$  for  $|z - z_0| < R$ . Then, because  $S(z) = S_N(z) + \rho_N(z)$  for  $|z - z_0| < R$ , we have

$$|S(z) - S(z_1)| = |(S_N(z) + \rho_N(z)) - (S_N(z_1) + \rho_N(z_1))|$$

# $\leq |S_N(z)-S_N(z_1)|+| ho_n(z)|+| ho_N(z_1)|$ by the Triangle Inequality. (\*)

Let  $\varepsilon > 0$ . If z is any point in some closed disk  $|z - z_0| \le R_0$  where  $|z_1 - z_0| < R_0 < R_1$ , then by the uniform convergence of the power series on set  $|z - z_0| \le R_0$  as given by Theorem 5.63.2, there is  $N_{\varepsilon} \in \mathbb{N}$  such that

$$|
ho_N(z)| < rac{arepsilon}{3}$$
 whenever  $N > N_{arepsilon}$ . (\*\*)

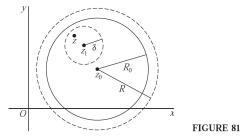
### Theorem 5.64.1

**Theorem 5.64.1.** A power series  $\sum a_n(z-z_0)^n$  represents a continuous function S(z) at each point inside its circle of convergence  $|z - z_0| = R$ . **Proof.** Let  $S_N(z) = \sum_{n=0}^{N-1} a_n (z-z_0)^n$  and consider the remainder function  $\rho_N(z) = S(z) - S_N(z)$  for  $|z - z_0| < R$ . Then, because  $S(z) = S_N(z) + \rho_N(z)$  for  $|z - z_0| < R$ , we have  $|S(z) - S(z_1)| = |(S_N(z) + \rho_N(z)) - (S_N(z_1) + \rho_N(z_1))|$  $\leq |S_N(z) - S_N(z_1)| + |\rho_n(z)| + |\rho_N(z_1)|$  by the Triangle Inequality. (\*) Let  $\varepsilon > 0$ . If z is any point in some closed disk  $|z - z_0| \leq R_0$  where  $|z_1 - z_0| < R_0 < R_1$ , then by the uniform convergence of the power series on set  $|z - z_0| \leq R_0$  as given by Theorem 5.63.2, there is  $N_{\varepsilon} \in \mathbb{N}$  such that

$$|
ho_N(z)| < rac{arepsilon}{3}$$
 whenever  $N > N_arepsilon$ . (\*\*)

## Theorem 5.64.1 (continued 1)

**Proof (continued).** In particular, this inequality holds for each point z in some neighborhood  $|z - z_1| < \delta_1$  of  $z_1$  that is small enough to be contained in the disk  $|z - z_1| \le R_0$  (see Figure 81).

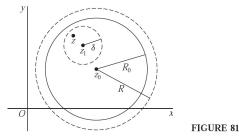


Now the partial sum  $S_N(z)$  is a polynomial and so is continuous for each value of N at  $z = z_1$  by Corollary 2.18.B. When  $N = N_{\varepsilon} + 1$ , by the definitions of continuity and limit, we can choose  $\delta_2 > 0$  such that

$$|S_N(z) - S_N(z_1)| < rac{arepsilon}{3}$$
 whenever  $|z - z_1| < \delta_2$ . (\*\*\*)

## Theorem 5.64.1 (continued 1)

**Proof (continued).** In particular, this inequality holds for each point z in some neighborhood  $|z - z_1| < \delta_1$  of  $z_1$  that is small enough to be contained in the disk  $|z - z_1| \le R_0$  (see Figure 81).



Now the partial sum  $S_N(z)$  is a polynomial and so is continuous for each value of N at  $z = z_1$  by Corollary 2.18.B. When  $N = N_{\varepsilon} + 1$ , by the definitions of continuity and limit, we can choose  $\delta_2 > 0$  such that

$$|S_N(z) - S_N(z_1)| < rac{arepsilon}{3}$$
 whenever  $|z - z_1| < \delta_2$ . (\*\*\*)

Theorem 5.64.1 (continued 2)

**Proof (continued).** So with  $N = N_{\varepsilon} + 1$ ,  $\delta = \min{\{\delta_1, \delta_2\}}$ , and with  $|z - z_1| < \delta_2$  we have

$$|S(z) - S(z_1)| \leq |S_N(z) - S_N(z_1)| + |\rho_N(z)| + |\rho_N(z_1)| \text{ by } (*)$$
  
$$< \frac{\varepsilon}{3} + |\rho_N(z) + |\rho_N(z_1)| \text{ by } (**)$$
  
$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + |\rho_N(z_1)| \text{ by } (**)$$
  
$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \text{ with } z = z_1 \text{ in } (**)$$
  
$$= \varepsilon.$$

Therefore  $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$  is continuous at  $z_1$  and, since  $z_1$  is an arbitrary point inside the circle of convergence, S(z) is continuous inside the circle of convergence, as claimed.

Theorem 5.64.1 (continued 2)

**Proof (continued).** So with  $N = N_{\varepsilon} + 1$ ,  $\delta = \min{\{\delta_1, \delta_2\}}$ , and with  $|z - z_1| < \delta_2$  we have

$$|S(z) - S(z_1)| \leq |S_N(z) - S_N(z_1)| + |\rho_N(z)| + |\rho_N(z_1)| \text{ by } (*)$$
  
$$< \frac{\varepsilon}{3} + |\rho_N(z) + |\rho_N(z_1)| \text{ by } (**)$$
  
$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + |\rho_N(z_1)| \text{ by } (**)$$
  
$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \text{ with } z = z_1 \text{ in } (**)$$
  
$$= \varepsilon.$$

Therefore  $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$  is continuous at  $z_1$  and, since  $z_1$  is an arbitrary point inside the circle of convergence, S(z) is continuous inside the circle of convergence, as claimed.