Complex Variables

Chapter 5. Series

Section 5.64. Continuity of Sums of Power Series—Proofs of Theorems

Table of contents

(1) Theorem 5.64.1

Theorem 5.64.1

Theorem 5.64.1. A power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ represents a continuous function $S(z)$ at each point inside its circle of convergence $\left|z-z_{0}\right|=R$.

Proof. Let $S_{N}(z)=\sum_{n=0}^{N-1} a_{n}\left(z-z_{0}\right)^{n}$ and consider the remainder function $\rho_{N}(z)=S(z)-S_{N}(z)$ for $\left|z-z_{0}\right|<R$. Then, because $S(z)=S_{N}(z)+\rho_{N}(z)$ for $\left|z-z_{0}\right|<R$, we have

$$
\left|S(z)-S\left(z_{1}\right)\right|=\left|\left(S_{N}(z)+\rho_{N}(z)\right)-\left(S_{N}\left(z_{1}\right)+\rho_{N}\left(z_{1}\right)\right)\right|
$$

$\leq\left|S_{N}(z)-S_{N}\left(z_{1}\right)\right|+\left|\rho_{n}(z)\right|+\left|\rho_{N}\left(z_{1}\right)\right|$ by the Triangle Inequality. (*)

Theorem 5.64.1

Theorem 5.64.1. A power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ represents a continuous function $S(z)$ at each point inside its circle of convergence $\left|z-z_{0}\right|=R$.

Proof. Let $S_{N}(z)=\sum_{n=0}^{N-1} a_{n}\left(z-z_{0}\right)^{n}$ and consider the remainder function $\rho_{N}(z)=S(z)-S_{N}(z)$ for $\left|z-z_{0}\right|<R$. Then, because $S(z)=S_{N}(z)+\rho_{N}(z)$ for $\left|z-z_{0}\right|<R$, we have

$$
\left|S(z)-S\left(z_{1}\right)\right|=\left|\left(S_{N}(z)+\rho_{N}(z)\right)-\left(S_{N}\left(z_{1}\right)+\rho_{N}\left(z_{1}\right)\right)\right|
$$

$\leq\left|S_{N}(z)-S_{N}\left(z_{1}\right)\right|+\left|\rho_{n}(z)\right|+\left|\rho_{N}\left(z_{1}\right)\right|$ by the Triangle Inequality. (*)
Let $\varepsilon>0$. If z is any point in some closed disk $\left|z-z_{0}\right| \leq R_{0}$ where $\left|z_{1}-z_{0}\right|<R_{0}<R_{1}$, then by the uniform convergence of the power series on set $\left|z-z_{0}\right| \leq R_{0}$ as given by Theorem 5.63.2, there is $N_{\varepsilon} \in \mathbb{N}$ such that

$$
\left|\rho_{N}(z)\right|<\frac{\varepsilon}{3} \text { whenever } N>N_{\varepsilon} .(* *)
$$

Theorem 5.64.1

Theorem 5.64.1. A power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ represents a continuous function $S(z)$ at each point inside its circle of convergence $\left|z-z_{0}\right|=R$.

Proof. Let $S_{N}(z)=\sum_{n=0}^{N-1} a_{n}\left(z-z_{0}\right)^{n}$ and consider the remainder function $\rho_{N}(z)=S(z)-S_{N}(z)$ for $\left|z-z_{0}\right|<R$. Then, because $S(z)=S_{N}(z)+\rho_{N}(z)$ for $\left|z-z_{0}\right|<R$, we have

$$
\left|S(z)-S\left(z_{1}\right)\right|=\left|\left(S_{N}(z)+\rho_{N}(z)\right)-\left(S_{N}\left(z_{1}\right)+\rho_{N}\left(z_{1}\right)\right)\right|
$$

$\leq\left|S_{N}(z)-S_{N}\left(z_{1}\right)\right|+\left|\rho_{n}(z)\right|+\left|\rho_{N}\left(z_{1}\right)\right|$ by the Triangle Inequality. (*)
Let $\varepsilon>0$. If z is any point in some closed disk $\left|z-z_{0}\right| \leq R_{0}$ where $\left|z_{1}-z_{0}\right|<R_{0}<R_{1}$, then by the uniform convergence of the power series on set $\left|z-z_{0}\right| \leq R_{0}$ as given by Theorem 5.63.2, there is $N_{\varepsilon} \in \mathbb{N}$ such that

$$
\left|\rho_{N}(z)\right|<\frac{\varepsilon}{3} \text { whenever } N>N_{\varepsilon} .(* *)
$$

Theorem 5.64.1 (continued 1)

Proof (continued). In particular, this inequality holds for each point z in some neighborhood $\left|z-z_{1}\right|<\delta_{1}$ of z_{1} that is small enough to be contained in the disk $\left|z-z_{1}\right| \leq R_{0}$ (see Figure 81).

FIGURE 81
Now the partial sum $S_{N}(z)$ is a polynomial and so is continuous for each value of N at $z=z_{1}$ by Corollary 2.18.B. When $N=N_{\varepsilon}+1$, by the definitions of continuity and limit, we can choose $\delta_{2}>0$ such that

$$
\left|S_{N}(z)-S_{N}\left(z_{1}\right)\right|<\frac{\varepsilon}{3} \text { whenever }\left|z-z_{1}\right|<\delta_{2} . \quad(* * *)
$$

Theorem 5.64.1 (continued 1)

Proof (continued). In particular, this inequality holds for each point z in some neighborhood $\left|z-z_{1}\right|<\delta_{1}$ of z_{1} that is small enough to be contained in the disk $\left|z-z_{1}\right| \leq R_{0}$ (see Figure 81).

FIGURE 81
Now the partial sum $S_{N}(z)$ is a polynomial and so is continuous for each value of N at $z=z_{1}$ by Corollary 2.18.B. When $N=N_{\varepsilon}+1$, by the definitions of continuity and limit, we can choose $\delta_{2}>0$ such that

$$
\left|S_{N}(z)-S_{N}\left(z_{1}\right)\right|<\frac{\varepsilon}{3} \text { whenever }\left|z-z_{1}\right|<\delta_{2} . \quad(* * *)
$$

Theorem 5.64.1 (continued 2)

Proof (continued). So with $N=N_{\varepsilon}+1, \delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, and with $\left|z-z_{1}\right|<\delta_{2}$ we have

$$
\begin{aligned}
\left|S(z)-S\left(z_{1}\right)\right| & \leq\left|S_{N}(z)-S_{N}\left(z_{1}\right)\right|+\left|\rho_{N}(z)\right|+\left|\rho_{N}\left(z_{1}\right)\right| \text { by }(*) \\
& <\frac{\varepsilon}{3}+\left|\rho_{N}(z)+\left|\rho_{N}\left(z_{1}\right)\right| \text { by }(* * *)\right. \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\left|\rho_{N}\left(z_{1}\right)\right| \text { by }(* *) \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3} \text { with } z=z_{1} \text { in }(* *) \\
& =\varepsilon .
\end{aligned}
$$

Therefore $S(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is continuous at z_{1} and, since z_{1} is an arbitrary point inside the circle of convergence, $S(z)$ is continuous inside the circle of convergence, as claimed.

Theorem 5.64.1 (continued 2)

Proof (continued). So with $N=N_{\varepsilon}+1, \delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, and with $\left|z-z_{1}\right|<\delta_{2}$ we have

$$
\begin{aligned}
\left|S(z)-S\left(z_{1}\right)\right| & \leq\left|S_{N}(z)-S_{N}\left(z_{1}\right)\right|+\left|\rho_{N}(z)\right|+\left|\rho_{N}\left(z_{1}\right)\right| \text { by }(*) \\
& <\frac{\varepsilon}{3}+\left|\rho_{N}(z)+\left|\rho_{N}\left(z_{1}\right)\right| \text { by }(* * *)\right. \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\left|\rho_{N}\left(z_{1}\right)\right| \text { by }(* *) \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3} \text { with } z=z_{1} \text { in }(* *) \\
& =\varepsilon .
\end{aligned}
$$

Therefore $S(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is continuous at z_{1} and, since z_{1} is an arbitrary point inside the circle of convergence, $S(z)$ is continuous inside the circle of convergence, as claimed.

